Open System Interconnection Model (OSI) & Connecting Devices (Networks & Internetworks)

DDE, University of Kashmir

By
Suhail Qadir
System Analyst
suhaimir@uok.edu.in

Part 1.
Open System Interconnection Model (OSI)
Layering, Protocols and Interfaces

A Set of Layers and protocols is called as Network Architecture

Some **Design Issues** for the Layers

Some of the key design issues that occur in computer networks are present in several layers:

- **Addressing.**
 1. Physical Addressing (MAC Address)
 2. Logical addressing (IP Address)

- **Error Control.**
- **Fragmentation and Re-Assembly.**
 - **Sequencing**
- **Flow Control.**
- **Multiplexing and Demultiplexing.**
- **Routing.**

Why Layering, Interfaces?

- Reducing Complexity
- Ensuring interoperable Tech
- Facilitate Modular Engineering
THE OSI MODEL

The OSI Reference model provides means of describing how data is transmitted over a network.

The Model Addresses **Hardware, Software and Data Transmission**

Established in 1947, the International Standards Organization (ISO) is a multinational body dedicated to worldwide agreement on international standards.

An ISO standard that covers all aspects of network communications is the Open Systems Interconnection (OSI) model.

The Model is called **ISO OSI (Open System Interconnections)**, because it deals with connecting open systems, i.e. systems that are open for communication with other systems.

Seven layers of the OSI model

1. **Physical**
2. **Data link**
3. **Network**
4. **Transport**
5. **Session**
6. **Presentation**
7. **Application**
Data Exchange using the OSI model

Encapsulation

De-capsulation

Transmission medium
The Physical Layer

Deals with transmission of raw bits over a communication channel

Issues related to electrical /optical characteristics of medium are addressed (i.e. activating and deactivating physical links, voltage levels, timing of voltage changes)

Synchronization of Bits

Data Rate

Physical cables, physical connectors and other similar activities.

Physical Topology

Transmission Mode (simplex, half duplex, full duplex)

Hubs and Repeaters.

Physical layer
Data Link Layer

The data link layer is responsible for moving frames from one hop (node) to the next.

Organizes data bits into frames whose integrity can be checked (error detection)

Transmits frames sequentially using necessary synchronization, error-control and flow-control.

Physical Addressing

Link Layer Protocols Include:

LAN: Ethernet, 802.3, 802.11, Token ring

WAN: HDLC, PPP, Packet over SONET (POS), Bridges, Switches.
Hop-to-hop delivery
Network Layer

Uses services of data-link layer to transport individual packets from source end-point to destination end-point.

Provides a simplified mechanism to the upper layers for routing packets within a WAN-subnet.

Packet-level (logical) addressing, routing and congestion control are built into this layer.

Heterogeneous networks (different pkt sizes, addressing schemes, formats) are interconnected at this level.

Source-to-destination delivery
Network layer

Protocols include -
* Internet Protocol -
 IP, OSI CLNP in the past protocols such as
 IPX and Appletalk
* Routing Protocols to provide "Best Path"
 include - RIP, OSPF, IS-IS, EIGRP, IGRP

Transport Layer

The first end-to-end layer which establishes communication between source and destination processes (running on remote hosts).

Service Point Addressing (Port Addressing).
Segmentation and Reassembly.
Connection Control.
 – Connection Oriented (Reliable)
 – Connectionless (UN-reliable)
Flow Control (end to end).
Error Control (end to end).
Connection Oriented:
TCP provides reliable, connection-oriented service on top of IP.
Acknowledgement of IP packets
Applications that use TCP:
HTTP, FTP, telnet, SMTP, POP3 and some Video/Audio Streaming

Connectionless:
UDP - An unreliable, connection-less protocol on top of IP.
No acks and re-transmits, **Packet Drop**
Applications that use UDP, not TCP:
Streaming media, e.g. RealAudio and RealVideo.
VoIP, Online multiplayer games like Counter Strike
Session Layer

Provides framework which enables remotely co-operating applications to establish, manage and terminate sessions between them

Sessions offers various Services;

Dialog Control (keeping track of whose turn it is to transmit)

Token Management (Preventing two parties from attempting the same critical operation at the same time).

Synchronization (Check pointing the long transmission)

Presentation Layer

Unlike lower layers, which are mostly concerned with moving bits around, the Presentation Layer is concerned with the syntax and semantics of the information transmitted.

Provides independence to the application processes from differences in data representation (syntax).

Translation: Enables development of network applications which are independent of differences in data representation (32-bit vs 64-bit, ASCII vs EBCDIC, Little-endian vs Big-endian) used by the communicating hosts.

Encryption and Decryption.

Compression.
Application Layer

Interfaces with the Application Programs and Provides network access to the applications

Includes protocols Used by the Application Programs, which enable exchange of files/data between hosts

Examples: FTP, Telnet (virtual terminal), RLOGIN, HTTP(retrieves HTML pages from a web server), SMTP, POP.

Summary of layers

- Application: To allow access to network resources
- Presentation: To establish, manage, and terminate sessions
- Session: To move packets from source to destination; to provide internetworking
- Transport: To translate, encrypt, and compress data
- Network: To provide reliable process-to-process message delivery and error recovery
- Data link: To organize bits into frames; to provide hop-to-hop delivery
- Physical: To transmit bits over a medium; to provide mechanical and electrical specifications
TCP/IP and OSI model

Application
- SMTP
- FTP
- HTTP
- DNS
- SNMP
- TELNET
- ...

Presentation

Session
- SCTP
- TCP
- UDP

Transport

Network (internet)
- ICMP
- IGMP
- IP
- RARP
- ARP

Data link

Physical

Protocols defined by the underlying networks
(host-to-network)
Part 2
Connecting Devices
(Networks & Internetworks)

Five connecting devices

- Repeaters
- Hubs
- Bridges
- Switches
- Routers
1. **REPEATER**

1. A physical layer device that acts on bits not on frames or packets.
2. Can have two or more interfaces.
3. When a bit (0, 1) arrives, the repeater receives it and regenerates it, then transmits it onto all other interfaces.
4. Used in LAN to connect cable segments and extend the maximum cable length, i.e., extending the geographical LAN range.
5. Ethernet 10base5 – Max. segment length 500m – 4 repeaters (5 segments) are used to extend the cable to 2500m.
Wireless Repeater
2. HUB

MULTI-PORT REPEATER

Network Hub

Connection to the hub consists of two pairs of twisted pair wire one for transmission and the other for receiving.

Data for 192.168.0.8

Speeds: 10 Mbps and 100 Mbps.

192.168.0.6
192.168.0.7
192.168.0.8
192.168.0.9

2. HUB continued..

• Acts on the physical layer
• Operate on bits rather than frames
• Also called multiport repeater
• Used to connect stations adapters in a physical star topology but logically bus
• Connection to the hub consists of two pairs of twisted pair wire one for transmission and the other for receiving.
• Hub receives a bit from an adapter and sends it to all the other adapters without implementing any access method.
• does not do filtering (forward a frame into a specific destination or drop it) just it copy the received frame onto all other links
• The entire hub forms a single collision domain, and a single Broadcast domain
• Collision domain: is that part of the network (set of NICs) when two or more nodes transmit at the same time collision will happen.
• Broadcast domain: is that part of the network (set of NIC) where each NIC can 'see' other NICs' traffic broadcast messages.
• Multiple Hubs can be used to extend the network length
How a Net gear HUB looks like

A usb Hub, not to be confused with a network hub

USB 3.0 HUB
Converting a USB hub into a network hub

USB 3.0 HUB

Ethernet adapter

WiFi HUB

WiFi N 300 MBPS RJ-45 2x ANTENNAS
3. BRIDGE

- Divide a Large Network into much smaller manageable ones.
- Isolates collision domains resulting in higher total max throughput.
- Can connect different type of LAN technologies.
- Limit the Broadcast by creating different Broadcast Domains
A bridge dividing a LAN into 2 segments i.e. 2 broadcast domains.

Figure 15.8 Bridge Operation

A bridge connecting different LAN technologies.
Working of the Bridge (Learning Bridge)

LAN 1

1

Bridge

2

LAN 2

C

D

LAN 3

E

F

Address	Port
a. Original

forwarding table (MAC table)

LAN 1

1

Bridge

2

LAN 2

C

D

LAN 3

E

F

Address	Port
A | 1
b. After A sends a frame to D
Working of the Bridge (Learning Bridge)

LAN 1

A

B

Bridge

LAN 2

C

D

LAN 3

E

F

Address	Port
A | 1
E | 3
B | 1
d. After B sends a frame to C

c. After E sends a frame to A
Transparent bridge

A transparent bridge does not need programming but observes all traffic and builds routing tables from this observation.

This observation is called backward learning.

There are two types of Transparent Bridge Modes:

- **Store-and-Forward**: Stores the entire frame and verifies the CRC before forwarding the frame. If a CRC error is detected, the frame is discarded.

- **Cut-Through**: Forwards the frame just after it reads the destination MAC address without performing a CRC check.

A transparent bridge is found with **CSMA/CD LANs**

Source-route Bridges

A source-routing bridge is found with **token ring networks**. Source-routing bridges do not learn from watching tables.

When a workstation wants to send a frame, it must know the exact path of network / bridge.

If a workstation does not know the exact path, it sends out a discovery frame.

The discovery frame makes its way to the final destination, then as it returns, it records the path.
Bridging Loop

No Bridging Loop With Spanning tree Algorithm
4. SWITCH

- A switch is a combination of a hub and a bridge.
- Allows more than one device connected to the switch directly to transmit simultaneously
- It can interconnect two or more workstations, but like a bridge, it observes traffic flow and learns.

When a frame arrives at a switch, the switch examines the destination address and forwards the frame out the one necessary connection.

Two types:

- **Store-and-forward:** switch receives the whole a frame on the input line, buffers it briefly, performs error checking, then routes it to the appropriate output line (similar to bridge). **Buffering** will cause some **delay**.
- **Cut-through:** based on the fact that the destination address appears at the beginning of the MAC frame, so once the address is recognized the frame is directly sent to the appropriate output line if the output buffer is empty (no need to buffer it). ➔ no buffering delay ➔ **NO ERROR CHECKING**
Using the Virtual LAN technology will allow grouping computers logically instead of physically.

- VLAN divides the physical LAN into several Logical LANs called VLANs
- Switch maintains a look up table to know to which LAN a machine belongs to.

5. ROUTER

- Operates at network layer = deals with packets not frames
- Connect LANs and WANs with similar or different protocols together
- Switches and bridges isolate collision domains but forward broadcast messages to all LANs connected to them. Routers isolate both collision domains and broadcast domains
- Acts like normal stations on a network, but have more than one network address (an address to each connected network)
- Deals with global address (network layer address (IP)) not local address (MAC address)
- Routers Communicate with each other and exchange routing information
- Determine best route using routing algorithm by special software installed on them
- Forward traffic if information on destination is available otherwise discard it (not like a switch or bridge)