Draft PDE Lecture Notes Khanday M.A.

Chapter 2
PARTIAL DIFFERENTIAL EQUATIONS OF SECOND ORDER

INTRODUCTION: An equation is said to be of order two, if it involves at least one
of the differential coefficients r = (82 / 3%), s = (8°z/dx dy), t=(0%z/ d%), but
now of higher order; the quantities p and g may also enter into the equation. Thus the
general form of a second order Partial differential equation is

f(x,y,2,0,q971,5s1t) =0 (1)

The most general linear partial differential equation of order two in two independent
variables x and y with variable coefficients is of the form

Rr + Ss + Tt +Pp +Qq +Zz = F .. (2)
where R, S, T, P, Q, Z, F are functions of x and y only and not all R, S, T are zero.

Ex.1: Solver = 6x.

2
Sol. The given equation can be written as 272 = 6x (1)

Integrating (1) w. r. t. xg—i = 3x% + 0,(y) ..(2)
where @, (y) is an arbitrary function of y.
Integrating (2) w. r. t. we get
xz = x5+ x0,(y) + 0,(y)
where @(y) is an arbitrary function of y.
Ex.2.ar = xy
Sol: Given equation can be written as % = %xy (1)

Integrating (1) w. r. t., x, we get

w=)5 00 -2

where @;(y) is an arbitrary function of y

Integrating (2) w. r. t., X,

2= ()24 xB1(y) + 22(y)
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or 2= -+ X Bi(y) + B2(Y)
where @,(y) is an arbitrary function of y.
Ex.3: Solve r=2y?

Sol:  Try yourself.

Ex. 4. Solve t = sin(xy)

2
Sol. Given equation can be written as 272 = sin(xy)...(1)
Integrating (1) w.r.t., vy

0z - _ (1) cos(xy) + @1(x) . (2)

ay x
Integrating (2) w.r. t., y
1 .
z = —(5)sinGey) +y 00+ 0,(x)
which is the required solution, @, @, being arbitrary functions.

Exercises:xys = 1

9%z

Sol: We know that s =
dxdy

9%z

Therefore  xy ooy

622_1

or

dxdy - xy
Integrating w.r.t., y we have

0z

1
I oy + f(x)

Again integrating w.r.t., X we get

7z = logxlogy+Jf(x) dx + F(y)

Or z=logxlogy + g(x) + F(y)

Department of Mathematics, University of Kashmir, Srinagar-190006



Draft PDE Lecture Notes

Exercises:2x + 2y = s

Sol: The given equation can be written as

92 otz
oxdy XxTay
Integrating w.r.t., y, we have
% )ty oay (x)
0=V Tyt flx

Integrating w.r.t., x, we have
z =y2x+x2y+ff(x)dx+F(y)

cz=y*x+x*y+ g(x) + F(y)
Exercises:xr + p = 9x2y3

Sol: The given equation can be written as

0%z

— Q4243
xﬁ+p—9xy

dp
= x—+p = 9x%y3
xax P X"y

o P _ 3

= + o= 9xy

which is linear first order differential equation in p
I.LF. is el8* = x

Multiplying (1) by x we get
op Pl _ o2 3
X [ax M x] =97y

:>px=9fx2y3dx

3,,3

y
3 + 1)

=>px =9

= px =33y + f(y)
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33y + f(y)
SPET

0z f)
Zf _2,2.3
=>ax 3x°y +—x

Integrating with respect to x we get

z=x%y" + f(y)logx + F(y)
Exercises:yt — q = xy
Sol: Please try yourself.
Exercises:t — xq = x?
Sol: Please try yourself.

Exercises:r = 2y?

Sol: The given equation can be written as

622_2 5

ox2 Y
dp

= — = 2x?
0x x

Integrating with respect to x we get

p=2y*x+f(y)

0z

— =2y2
= oo =2y x+f(y)

Integrating we get
z=y’x* + jf(y) dx + F(y)

=z=yx* +xf(y) + F()
Exercises:t = sin(xy)
Sol: Please try yourself.
Exercises:logs = x + y
Sol: The given equation can be written as
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log 29 =y 4
Og(’)x_x y
aq x+
1 _ y
:ax e
d
=>£=exey

Integrating w.r.t. x we get

q=e"e’ +f()
R dz Y+ F )
3y ¢ fly
Integrating w.r.t., y, we get
z=-¢e%eY +ff(y)dy+F(x)

or z=e*e” + g(y) + F(x)

Exercises:s — t = yx—z

Sol: Please try yourself.
Exercises:it+s+q =0

Sol: The given equation can be written as

dq Op 0z
dy dy dy

Integrating with respect to y, we get
q+p+z=f(x)
2pt+tq=f) -z
Itis of the form Pp+ Qq =R

Its auxiliary system is

dx dy dz

1 1 fx)—z

(1)

From first two fractions of (1) we get
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dx =dy
> x—y=a

From first and third fractions of (1) we get

dx_ dz
1 f)-z
= [f(x) —z]dx = dz
dz_
- -z
=>Z—i—z=f(x)

It is first order linear differential equation in z
Its integrating factor is e/ 4 = e*

Therefore ze* = [ f(x) e*dx

= ze* =ff(x)exdx+f(y)

Exercise:it+s+qg=1
Sol: Please try yourself.
Exercise: Find the surface passing through the parabolas,

y? = 4ax, z=0
and y? = —4ax, z=1
and satisfying the equation xr + 2p = 0.
Sol: The given second order partial differential equation is

xr+2p=20

S242y-0 ()

It is first order linear differential equation in p.

. . . 2 2
Its integrating factor is ~ eJx% = e2logx = glogx* = 42
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From (1) we get
x’p = f 0dx
= x’p = dex+f(y)

i)

x2

Integrating w. r. t. x we have
2=~ fO)+F() @
Using the given condition z = 0, x = g, in equation (2), we have
0=-2310) +FB)
or F(y) = %2(” .3

2
Alsoforz=1,and x = %, we have from (2) we have

4a
1= Ff(y) + F(y)

Using (3) we get

or 1= 4af2(y) n 4af2(y)
y y
8a
L8 2(y)
y
2
y
= f(y) = 8a
Substituting £ (y), in (3)
4a y?
Fiy) =—==—
) 2 8a
1
= F(y) = >
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Therefore from (1) we get

—_

G
8ax 2

Which is the required surface passing through the parabolas.
Exercise: Find the surface satisfying t = 6x3y containing the two lines
y=0= zand y=1=z

Sol: The given 2" order PDE is

Integrating w. r. t., y, we have

6x3y2
2

q= + f(x)

d
-2 3x3y% + f(x)

dy
Integrating w. r. t., y,
3 3,,3
z= x3y +yf() + F(x)
= 7= 2% +yf(0) + F(x) ()

Using given conditionsy = 0 =z, in (1), we have
0=0+0+F(x)

>FXx)=0 .. (2
Also usingy =1 =z inequation (1) we get,

1=x34+fx)+F(x)
Using (2),weget 1=x3+f(x)+0
fx)=1-x3 --(3)
Using (2) and (3) in (1) we get
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z=x3y3 +y(1—x3)
Which is the required surface containing the two lines.

Exercise: Find the surface satisfying r + s = 0, and touching the elliptic paraboloid
z = 4x? + y? along the surface of plane y = 2x + 1.

Sol: From the given equation we have Z—Z + Z—z =0.
Integrating with respect to x, we have
p+ta=fQ)
Now, the auxiliary system is
de:dTy:fZ) (1)
Taking first two fractions we get
dx _dy
1 1
Integrating we get
xX=y+a
N x—y=a .2
Also from 2" and 3™ fractions of (1), we get
d_y _dz
1 f
= dz = f(y)dy
=z=¢(y)+b
or z=@(y)+F(a)
>z=9p)+Fx—-y) - (3)
From (3), we get
p="=F(x-y) .(4)
4= =¢'®)—F(x-y) .- (5)

ay
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Since z = 4x? +y?

__ 0z

== 8x ...(6)
From (4) and (6)
F'(x—y)=8x ... (8)

From (5) and (7)
() —Fx—y) =2y -9
Adding (8) and (9) we get

@ (y) = 8x + 2y

= g(y -1 +2y
=6y —4
Integrating w. r. t., y, we get
o(y) =3y* —4y+b ... (10)
Also, from (8)
—F(x—y)=8x=-8(y—x—1)=8x—-y+1)
Integrating w. r. t., (x — y) we get
—F(x—y)=4(x—y)>+8(x —y)+c ... (11)
Substituting (10) and (11) in (3) we get
z=3y?2—4y+b—-4(x—y)? —-8(x—y) +c
=—4x’> —y> +4y —8x+8xy+d
From the given condition,
42 + (2x+1)? = —4x?> — 2x+ 1D?* +4(2x+1) —8x +8x(2x + 1) + d
=8x%+2Q2x+1)*=4(2x+1)—8x+8x(2x+ 1) +d
= 8x?+8x*+2+8x=8x+4—8x+16x* +8x+d
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>d=-2
Therefore z=—4x*—y? +4y—8x +8xy—2
which is required surface.

Exercise: Show that the surface satisfying r = 6x + 2 and touching z = x3 + y3
along its section by the planex +y+1=0 is z=x3+y3+ (x + y + 1)

Sol: Try yourself.

Partial differential equations with constant coefficients:

We know that the general form of a linear partial differential equation

0"z "z 0"z 0"z
An o+ vt oy vz gt A = () - @
Where the coefficients 4,, A,_1, An,—p, ..., A; are constants or functions
of x and y. If A,, A,_1, A,—,, ..., Ajareall constants, then (1) is called

a linear partial differential equation with constant coefficients.

d d : .
We denote o and P by D (or D,) and D (or Dy) respectively.

Therefore (1) can be written as

[A, D" + A,_4D" D" + A, ,D"2D"* + .. + AD"]z=f(xy) .. (2
or ¢(D,D)z = f(x,y)

The complementary function of (2) is given by

[A,D" + A,_1D" D" + A,_,D" 2D + .- + A D™]|z=0 ..(3)
or @(D,DYz=0

Let z = F(y + mx) be the part of the solution

Dz = Z—iz mF (y + mx)

2 n
D%z = 272 =m?F (y +mx)
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D"z = Z% =m"F"(y + mx)

And

i 0z i
Dz—a—F(y+mx)

i 2 "
D?z 272=F (v + mx)

0"z

'n, —
D Z=5=

=F"(y + mx)
Substitute these values in (3), we get
[A,m™ 4+ A, ym™ P+ A, _,m™ 2+ ..+ AIF®(y+mx)=0

which is true if ‘'m’ is a root of the equation

If m;, m,, m,, are distinct roots, then complementary functions is
z=p1(y+mx) + o, (y +mpx) + ... o (y +mypx)
where @4,¢,, ... ¢, arearbitrary functions.
~@(D,DNz=0

we replace D by mand D' by 1 to get the auxiliary equation from which we get
roots.

Linear partial differential equations with constant coefficients

Homogenous and Non homogenous linear equations with constant coefficients: A
partial differential equation in which the dependent variable and its derivatives appear
only in the first degree and are not multiplied together, their coefficients being
constants or functions of x and y, is known as a linear partial differential equation.
The general form of such an equation is

"z "z "z "z on—1z a1y
[AO o T A1 g 19y2gxn—2 Tt ay_n] + [BO ot T B dyd xn—2
an1z an1z 0z 0z
1 Byzax”_3 + ... +Bn 6}1?] + [Moa + M1 @] + NOZ = f(x,y) (1)
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where the coefficients Ag, A1, ... Ay, Bo, By, ..., Bn1, Mg, My and Ng are all
constants, then (1) is called a linear partial differential equation with constant
coefficients.

For convenience % and % will be denoted by D and D' respectively.

2.1. Short method for finding the P.1. in certain cases of F(D,D) z = f(x, y)
2.1.a. Short method I. when f(x, y) is of the form @ (ax + by)
Ex.1. Solve (D*+3DD’' +2D%)z=x+y
Sol. The Auxiliary equation of the given equation is
m?+3m +2 = 0 giving m = -1,-2
therefore C.F. = @1(y-X) + @2(y-2x), @1, @, being arbitrary functions

1
Now Pl =—— &+
D2 +3DD' +2D'2

1
= 1311212 ff vdvdv, where v= X+y

=S (Fav=iT ooy
Hence the required general solution is z= C.F. + P.1.
or z = @a(y-x) + P2(y-2x) + 31—6 (x+y)*
Ex. 2. Solve (2D? —5DD' + 2D'?)z = 24 (y - x)
Sol: Try yourself
Ex.3.Solve (D? +3DD' +2D'?)z = 2x +3y
Sol: Try yourself
2.1.b.Short method I1.
When f(x,y) is of the form x™ y™ or a rational integral
Ex.1. Solve (D* —a’°D"?)z = x
Sol. Here auxiliary equation is m?*—a*=0so thatm = a, -a

Therefore CF.=0,(y+ax)+ 0,(y — ax), ..(1)
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@4, ©, being arbitrary functions.

NOW Pl = e (x) = m(x)

sh-e®@)] @
= —[1+a’(D?/D) +..]x

1
=—X
D2

6

Hence the required solution isz = C.F. + P.1.
X3
Z=@i(y+ax)+ @ (y-ax)+>

Exercise: 1.2r + 5s + 2t =0

Sol: It is a second order pole with constant coefficients, we have

0%z 0%z 0%z

2 2 =
0x? +5 dxdy + dy? 0

or (2D? 4+5DD" +2D'?)z =0
Now the auxiliary equations is given by

2m?>+5m+2)=0

Therefore the complementary function is z = ¢4 (y — %x) +@,(y —

which is required solution.
Exercise: 2.r = a’t

Sol: Try Yourself  (Ans: z = @,(y + ax) + ¢,(y —ax) )

. 4032 33z 83z
Exercise: 3.-— — 36x26y + 26x62y =0

Sol: It is a third order pole with constant coefficients, we have
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03z 3 03z +2 03z _
0x3 0x%dy 0xd2y

0

or (D3 —3D%D" +2DD'*)z=0
Now the auxiliary equations is given by
m3—3m?+2m=0
> m(m?*-3m+2) =0
>mim—-1)(m—-2)=0

>m=0 1, 2

Khanday M.A.

Therefore the complementary function is z = @1 (y) + ¢,(y + x) + @3(y + 2x)

Which is required solution.

Exercise: 4.% — 6az22y +11 6f;§y — % =0

Sol: Try yourself

Exercise: 5. 251 —40s + 16t = 0

Sol: Try yourself

Exercise: 6.(D* —D'Hz =0

Sol: The auxiliary equation is given by
mt—1=0

>m?-1)(mM?>+1)=0
>m-1(m+1D)(m—-i)(m+i)=0
>m=1, -1, i, —i

Therefore the complementary function is

2=y +x)+@(y —x) + o3(y + ix) + 4 (y — ix)

which is required solution.
Exercise: 7.(D3 — 4D?*D’' + 4DD'*)z =0

Sol: Try yourself.
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Exercise: 8.(D? — 2DD' + D'?)z = 12xy

Khanday M.A.

Sol: The auxiliary equations corresponding to these linear system of equations is

given by
m?—-2m+1=0
>(mMm-1)(m-1)=0
>m-=1, 1
Therefore the complementary function is
z=fi(y+x)+xf,(y +x)

Also, P. 1. = —=12xy

Therefore the complete solutionis z=C.F. +P. .
e, z=fily+x)+xfa(y +x)+2x3y +x*
Exercise: 9.(2D? — 5DD’' + 2D'?)z = 24(x — y)
Sol: Try yourself.

Exercise: 10.(D3 — D"3)z = x3y3
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Sol: The auxiliary equations is

Complementary functionis z = ¢(y + x) + ¢, (y +
-1-iv3

2

P. I

x)

mi—-1=0
s>m-1)(M*+m+1)=0

-14+ivV3 —-1-iV3
2 2

>m=1,

—1+iV3

-]

1 E) () e ]

2+ (5) s (5) e ]
xy3 + 203ty 2 40+ . |

[y + 65

33 + 613

'y +576%]
[y 4565

_ 61
3,3 1%

X

L y 20
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[x6y3 n x9 ]
120 10080

The complete solution is C.F. + P.I.

=@ (y +x) + L EMN Ml 0 T A
z=p1(y+x)+tely 5 x P3\Y 2 x 120 10080

Exercise: Find the real function ‘v’ of x and y reducing to zero when y = 0 and
3% %

Satisfying EY%] + W = —47'[(362 + yz)

Sol: We have to find the P. I. only

_ 1 _ 2 2
P. I = —D2+D,2[ At (x* + y2)]

= ———[-4n(x? + y?)]
D2(1+32—)

—4n [, D211
= D—zn 1 + ?] (x2 + yz)

2

= _4"_1—D—’2+(D—’2) + . ](x2+y2)

Dz D2 D2

- o2 .2y D% o2 2

= @YD -Tr Gy 40 ]
—4m [ D’

= Flet+yh -5 @)

= rlet+yh -5

= rlet+yh-5@0)

= e+ YD) - ()]

—4
Tn [xy?]

—4m [xzzyz]

—2mx?y?

Theorem: If uy, u,, us, ... ,u,arethe solutions of the homogeneous linear
PDE F(D,D")z = 0,then Y7'_;c,u, wherec,'s are arbitrary constants, is also a
solution.
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Proof: Since u,, r=1, 2, 3, . . ., naresolutionsofthe PDE F(D,D")z =0
So, we have u, is one of the solutions i.e.,
F(D,D"Yu, =0, r=1,2,...,n
~ F(D,D)(c,u,) = ¢, F(D,D)(u,)
andF(D,D)(Tw.) =X F(D,D)(u,)

. for any set of functions u,., we have

n

F(D,D") <Z crur> = zn: F(D,D)c,u,
r=1

r=1

n

= Z ¢,F(D,D)u,

r=1
=0

Therefore }.*_, c,u, acts as a solution for the homogeneous system.

Reducible and irreducible:

If an operator F(D, D") can be expressed as a product of linear factors, it is said to be
reducible. If it can not be factorised, then it is said to be irreducible.

Theorem: If a,D + B, D +y, isafactor of F(D,D") and ¢, (), then

u, = exp. (— ’Z—x) ¢, (B.x — a,y) for a, is a solution of the equation F(D,D")z =
0.

Proof: The given equationis  F(D,D)z=0 ... (1)

YrXx

ar

In order to prove u, = exp. (— )(pr Brx — a,y); a#0... (2

is a solution of (1), we have to prove  F(D,D")u, =0

Diff. eq.(2) w.r.t. x and y, we get

Du, = —Z—Tur + B,exp. (—

T

VrX
aT

o)
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And
’ VrX ’
D Uy = —arexp. <_ ; )QD (ﬁrx - ary)
T
' YeX\
(arD + .BrD + yr)ur = VU, + arﬁrexp- (_ a >(P (.Brx - ary)
T
YrX !
_arﬁr exp. (_ Z) @ (.Brx - ary) + Yry = 0... (3)

Since (a,D + B,D" +v,) is a factor of F(D,D")

Therefore F(D,D")z = g(D,D")(a,D + B,D +y,)z, using (3), we get
F(D,D")u, =0

Therefore u, is a solution of F(D,D")z = 0

Solution of Reducible Equations:

Let F(D,D")z=f(x,y) ... (1)

be a partial differential equation. Since (1) is reducible therefore

n

F(D,D")z = ﬂ(a:rD +B.D +y,)z

r=1
If z satisfies (a,D +B,D +y,)z=0,r=0,1, 2, ..., n, thenitgivesus
complementary function
d d

Now ar£+ﬂr£+yrz =0
The subsidiary system is

dx dy dz

ar ﬁT )/rZ

From the first two members

ﬁrx — oy =G

From first and last members we get
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Integrating we get

Also

Khanday M.A.

logz=—x + 4,

ar

= z = log 5, exp (—Z—rX) [e?r = B, ]

r

=z = @(r) exp (—Z—rx>

r

Vi
=z= (p(ﬁrx - ary) exp (_a_Tx)
r

dz Yy
A |
z B

=z = ¢(B,x) exp (—Z—:y)

Example: Let (a,D + 8,D +¥.)z, =0 where 2z = (a,D+B.D +v,)z

' Vi
= (arD + BrD + ]/r)Z = (pr(ﬁrx - ary) exp (_a_rx)

Y,
z; = ¢(B,x — a,y) exp (—a—rx)
.

T

0z 0z Yy
= ay Ox + ﬁr ay = (pr(ﬁrx - ary) e€xp <_a_x> — ¥z
T

Auxiliary system is

dx

ar

From first two we get

_dy dz

ﬁr (pr(ﬁrx_ary) exp <_Z_1;x) Wz

dx dy
aT BT
= f,.dx = a,dy

From first and third we get
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dx _ dz

ar (pr(ﬁrx - ary) €xp (_)/_rx) YrZ

dZ (pr(ﬁr ary)exp( )/7; )_)/rz

dx a,

dz Yz (pr(lgr Ty) exp (_)/_Tx)
+ —

dx a, a,

Yrx

Here I. F.is e« therefore the above equation can be written as

d( u) _¢r(Brx —ary)

ze %r
o

= Ze ar =_f§0r(ﬁr ary)dx'i'ﬁr

o 2ot = e % (g, (Bx — @) + ¥y (Brx — 4, )]

Example: If z = e +by
Then F(D,D")z = F(a,b)e®*by
z acts as the solution of F(D, D")z, where F(D,D")z is reducible if F(a,b) = 0.

33z _ 93z 33z x+y
0x2dy  0xdy? dy3

Exercise:% -2
Sol: The given differential equations can be written as

(D3 —2D2D" —DD'? 4+ 2D'3)z = e**Y
Auxiliary equations m3 —2m? —m +2 =10

s>(m-1D)M*-m-2)=0
>m=1, -1, 2

Therefore the C. F. is

z=fily+x)+ iy —x) + iy + 2x)

P.I. = ! x+y

7 e
D3-2D2D —DD'2+2D'3
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1
— ex+y

Dp2(D—2D")-D'*(D—D")

_ 1 "
(Dz_D’Z)(D—ZD’) et

1
- ex+y

(D-D")(D+D")(D-2D")

- 1 x+y

(D-D)H(1+1)(1-2) €

1
= —ex+y

—2(D-D")

__ 1 x+y
Nowlet w=_-—e

= (D —D")w = e*?Y
The auxiliary equations are

dx dy dw

From first two members we have

dx dy

1 -1
=>dx+dy=0
=>x+y=c

From first and third member we get

dx B dw

T - exty
dw

=dx =—
eC

Therefore the particular integral = —% =— %xe“y

Hence the complete solutionisz =C.F + P.1
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1
z=fiy+x0)+fi-0)+fily +2x) + _Exexﬂ'

Laplace Equation

Exercise: Find the solution of the equation V?z = e ™ cosy
Which tendsto 0 as x - oo and cosy for x = 0.
Sol: The given pde is V?z = e * cos y

0%z 0%z
ﬁﬁ'{'a—yzze Cosy

= (D> + D'?)z = e ¥ cosy C (1)
On comparing with F(D,D") = D? + D'> and f(x,y) = e *cosy
Let z = e *bY  pe the solution of (1)
(D24 D?)z= ale™+hy 4 p2earthy
= (a? + b?)e®+by
Where a? +b? =0 = F(a,b)
Therefore the complementary function is C.F.= Y%, A, e®+bY

A,'s being the constants and a? + b? = 0

Also P. 1.

—X
sz Cosy

—X

= cosy e

D?2-1
- 1 —X
= xcosyﬁe

X

X —
= —3cosye

Therefore the complete solution is
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Using z - 0 as x — oo, we write
a, = —A, where 1, >0
Since a? + b? = 0
= b, = tiya?

= +i,

(0¢]
. x
z = z A, e Mr¥etitrx _ Scosy e *
r=0

x
= z B, e ** cos(A,y +€,) — Scosy e x
r=0

Using the boundary condition

cosy = Z B, cos(4,.y +€,)
r=0

Where B, =1land A, =1 forr=0 and B.=0and A, =0 forr#0

Therefore z = cosye™ — %cosy e * is the required solution.

2
Exercise: Show that the equation % + 2k % =c"—
Possesses solution of the form ¥, C, e ™ cos(a, x + €,) cos(w,t + 6,)

Where C,, «a,, €., w,, 6, areconstantsand w, = §%c? — k?

. Wy _ o dy o
Sol: Let at_D' ax_D’
Therefore (D? + 2kD)y = c?D"?y
or (D? + 2kD — c?D'?)y = 0 .. (1)
It is irreducible, therefore let y = e h*
= Dy — aeat+bx and DZy — aZeat+bx

Similarly we get

D’y = he®*tbx  gnd D’Zy = hZeat+bx
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Therefore form (1) we have
aZeat+bx + 2kaeat+bx + CZbZeat+bx =0
= (a? + 2ka + c?b?)e®*h* =
= a’+2ka+c?b*>=0

-2kt Vak? + 4b%c?
N 2

= a

a=—k++k?+ b2c?

In general a, = —k + \/k? + b2c?

If b?}=—a?
Then a, = —k +/k? — a?c?
=—ktiw,

Where w? = a?c? — k?

Therefore y = elrXe®t

= e Xtp—iwrto—iarx

y = z c e cos(a,x + €,) cos(w,t + 6,)

r=0
Where C,, «a,, €,, w,, &, areconstantsand w, = §%c? — k?

Exercise:1 If z = f(x* —y) + g(x* + y), where f and g are arbitrary constants,
prove that

0%z 10z o 0%z

—_— = 4x?% —
ox?  xox ¥ dy?
Exercise:2 Find the solution of
0%z 0%z
a2y XY
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Sol: The given equation is
(D2 -D?)z=x—y
The auxiliary equationis m? —1 =0 sothat m = +1

Therefore C. F.is fi(y + x) + fo(y — x)

1

P.Lis ——=(x—y)
@) e
:%[1+(§)2+(§)4+ l(x—y)

D 2 4

:%[(x—y)+(D,) (x—y)+<§> x—y)+ ...

=—2[(x—y)+0+0 .

Khanday M.A.

3
Therefore the complete solutionisz=C.F.+P. I.= fily+x)+ fL,(y —x) + % -

yx

2

Exercise:3 Find the solution of
0%z N 0%z _, 0%z
dx*  ay* T ox20y?

Sol: Please try Yourself

Exercise:4 Show that the equation

Department of Mathematics, University of Kashmir, Srinagar-190006
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0%z 10z
dx2 kot
Possesses solution of the form

(e¢]

2
z c, cos(nx + €,) e7Fn°t

r=0
Sol: Please try Yourself

Exercise:5 Find the P. L. of the following PDE’s
(@ (D?—=D"Nz=2y—x?

(b) (D? —D")z =e?Y

() r+s—2t=e*"

(d) r—s+2q—z=x%?

9%z 3%z
(E) ﬁ dxdy

9%z
_6ﬁ= Y COS X

1

Sol: (@) P. 1. is 57— (2y —x?)
1 2
=—D,(2y—x)
D2 [1—ﬁ
' 4 ,
:ﬁ 1_ﬁ (Zy—X)

1 ! 2
— 2
—ﬁ[1+ﬁ+ﬁ+. .. l(Zy—x)

l; 12

1 2y, D 2 2
=52 2y —x )+ﬁ(2y—x )+F(2y—x )1

1 1
- |@v -3+ 5; )
1 1
= o3|@v - + 500
1 2 2
:ﬁ[(Zy—x )+ x°]

Department of Mathematics, University of Kashmir, Srinagar-190006
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1
=Dz [2y]
1
=D [2xy ]
_.ny
Which is required particular intergral
(b) Please try yourself.
(c) Please try yourself.
1
N (x*y?)
1 D2 1 -
=\t 7\p -z o)) VD
_A [ (20 1Y (D20 1 2+
D2 D D? D2 D D? D2 o

kﬁﬁw-@xw——@xw+ > (%) + 3 (e2y?) +

F(x y2)+ﬁ(x y?) —4 E(xzyz)_ﬁ(x y2)+

= [Py +EE) - ety 1 + (1) -
2= (%) + 5 (%)

8 7 6 5 4.,2 6
pa X X X X X
= A T T T e

2240 315 180 12 120 2570 630

which is the required particular integral.

Department of Mathematics, University of Kashmir, Srinagar-190006
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Chapter-3

Classification of second order partial differential equation

Definition: A second order partial differential equation which is linear w. r. t., the
second order partial derivatives i.e. r,s and t is said to be a quasi linear PDE of
second order. For example the equation

Rr +Ss +Tt +f(x,y,z,p,q) = 0 e (D)

where f(x,y,z, p,q) need not be linear, is a quasi linear partial differential equation.
Here the coefficients R, S, T may be functions of x and y, however for the sake of
simplicity we assume them to be constants.

The equation (1) is said to be

(i) Elliptic if S?-4RT<0
(ii) Parabolic if S?-4RT =0
(iii) Hyperbolic if ~ S?-4RT >0

BOUNDARY VALUE PROBLEMS: The function v in addition to satisfying the
Laplace and Poisson equations in bounded region R in three dimensional space,
should also satisfy certain boundary conditions on the boundary C of this region.
Such problems are referred to as Boundary value problems for Laplace and poison
equations. If a function f € C", then all its derivatives of order n are continuous. If f €
C° then we mean that f is continuous.

There are mainly three types of boundary value problems for Laplace equation. If f
e C% and is prescribed on the boundary C of some finite region R, the problem of
determining a function @ (x, y, z) such thatV?@ = 0 within R and satisfying @ = f on
C,is called the boundary value problem of first kind or Dirichlet problem. The second
type of boundary value problem (BVP) is to determine the function @ (x, y, z) so that

v%¢ = 0 within R while % is sepecified at every point of C, where %is the normal
derivative of @. This problem is called the Neumann problem.

The third type of boundary value problem is concerned with the determination of the
function @ (x, y,z) such that V°@ = 0 within R,while a boundary condition of the

form g+ h @ = f,where h> 0 is specified at every point of the boundary C.This is
called a mixed boundary value problem or Churchill’s problem.
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Separation of variables method:

The method of separation of variables is applicable to a large number of classical
linear homogenous Equations. The choice of the coordinate system in general
depends on the shape of the body. Consider a two dimensional Laplace equation

2 2
o'W o'W _

20 —
v'e = 0x? dy?

(D)

We assume that u(x,y) = X(x) Y(y) ..(2)
Equation (1) and (2) provide us

= Y7 =k (separation parameter)

alls

Three cases arise :

Case I: Let k>0.then k = p?, p is real we get

dX oy Y oy
" X—Oanddy2 pX =0

which imply that X = C; e”™ + C, ™
and Y = Cz cos py + Cy4 sin py
then solution is

u(x,y) = (Cy ™+ C, e™) (C3 cos py + C4 sin py) ..(3)

2 2
Casell:letk:Othend—);: 0 and &L =0
dx dy

Which provide us X =Csx + Cg and Y = C;y + Cg

The solution is therefore  u(x,y) = (Csx + Cg)( C7y + Cg) ..(4)
CASE I11: let k < 0 then k = -p? proceeding as in case I, we obtain

u(x,y) = (Cgcos px + Cyg sin px) (Cy1 ™ + C1o ™) ..(5)

In all these cases C; (i = 1, 2, 3, .. .,12) are integration constants,which are
calculated by using the boundary conditions. For example, consider the boundary
condition

U(x,0) =0, u(x, a) =0, u(X,y) = 0,as X = o

Wherex >0and 0<y <a.
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The appropriate solution for u(x, y) by the methods of separation of variables
obtained above in this case is

U(X,y) = (Cpe™+C,e™) (Cscos py + Cysinpy) ...(6)
Since u(x,y) — 0, as x — oo, we have
Ci=0VvVy

(x,y) = C,e™ (Cscospy+ Cysinpy)
As u(x,0) =0, we get
C,e™ C3=0 = C3=0 [ because Cy# 0% e Vv x]
U(x, y) = Ae™sinpy, A=C,C,
Now u(x,a) =0 = Ae™sinpa=0 =>sinpa=0[-A=# 0]
=>pa=nmnel=>p=nr/an=0+1,.
u(x, y) = X 4, e sin =
A, being new constant.

This is the required solution in this case.

Ex. Show that the two dimensional Laplace equation V;? V = 0, in the plane polar
coordinates r and 6 has the solution of the form (Ar" + Br") e (¥ ing),

where A and B are n constants. Determine V if it satisfies
V12V =0 inthe region 0<r < a, 0< 6 < 2m and

Q) V remains finiteasr - 0
(i) V =),Cncos(nf),onr=a.

Sol: Try yourself.

Laplace equation in cylindrical coordinates:

2 o 16V 10NV oWV
or? ror r?o6* o0z°

Let V =R(r)0(6)Z(z) be the solution
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2 2
8V_®28_R and 8\2/:(928'3
or or or or
2 2 2 2
00 06 0z oz
2 2 2
cyv=0z28 1oz R 1 g 09, ped L
or? r or r 00 0z
1/d*R 1dR 1d® 1dZ
Or —|—+-——|+ 5
R| dr r dr r’e do Zdz
1d?Z 2 d?z 2
Let gz - then 7 Z=0
Z:eiml
1d?%0 2 d?e 2 +ino
Nowletadezz—n :>d92+n ®=0 LO=g

d?R 1dR ?
Now +R mz—ﬂ =0
dr? rdr

which is Bessel’s equation

its solution can be written as

RO = A J,m)+B.Y,(m)
Therefore V/(r,6,2) = { A J (m)+B.Y.(Mmre™e™

Home Assignments

Exercise: Solve the PDE

0% 104, 10 _

o ror r?oH?

o¢

or

Subject to the condition v=—/—=0 at r=a
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And v, =U cosé, vez%%z—Usine asr— oo

Exercise: Solve the BVP
VlZu=00<r<10
0<o6<nm

Subject to the conditions
400
U,(].O, 9) = T (TL'H - 92)

u(r,0) =0 =u(r,m
And u(0, 8) is finite
Exercise: Show that the solution of the Cauchy problem for the Laplace equation

9%u N 0%u _ 0
ax2  9x?

Subject to the condition u(x,0) =0
1
uy (x,0) = —sinnx
n
Where n is a positive integer and
u(x,y) = = sinh ny sin nx

Interior Dirichlet problem for a circle
The Dirichlet problem for a circle is defined as follows:

To find the value of u at any point in the interior of the circle r = a in terms of its
values on the boundary such that u is the single valued and continuous function
within and on the circular region and satisfies the equation V?u = 0 ; 0< r < a subject
tou(a,0)=1(0);0< 6 <2m
We have
V2u=0%u/ar? + 1r 2+ 1/P0%u /002 = 0
We know that

u(r,0) = X% o(Car™ + Dor™) (An cos n6 + B, sinng )
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Since the function u is defined for all the values within and on the boundary of a
circle

Therefore for r =0 u(r,0 ) exists only for D, =0V n

Thusu(r,0) = ¥%_o7" (Ancos nd + B, sinng )
=ag/2+ Y7 ;7" (Arcos nd + B, sinnd ) where Ag=ag/ 2
= ay/2+Y7 1" (ancos nd + b, sinnd )

Putu(a,6 ) =1(8)

Therefore f(0) == ag/2 + Y—; a" (a,cos NG + by sinnd )

This is the full range Fourier series (i.e. a,, by 0)
Nowag = 1/ [ f(g)dg

an = l/ma™ fozn f(@) cosne de

b, = l/ma™ fozn f(@)sinng de
u(r,0 )=1/2m fozn f(p)de + lUn Z;’f’zl(r/a)”fozn cos nf cos ng + sinnf sinnepdep
u(r,0 )=1/mr { fozn f(@) [12+ ¥  (r/a)" cosnb cos ng + sinné sinng]lde }

u(r,6 )=1/m { foznf(QD) [1/2 + 35 1(r/a) cos n(p — )]dp } ..(1)
letc= Y2 ,(r/a)"cosn(p — )
S= Xi_i(r/a)"sinn(p — )
C+is= X {(r/a)e'@=9}"
S =rlael@=9[1-rlael@ D ;rfa<land| el 9| <1

S =rla[cos(p — 0) + i sinifip — 0)]/1-r/a (cos(p — 0) + i sinifip — 6)]

Equating real and imaginary parts
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C=thafcos(p —6) + 7/ 31112 /a) (cos(p — 8) + 7/ 5]

Using in (1) we get

2
T T
S cos (p—0)+ pvi

u(r0 =5 Jy " £ (o) [112 + - =T}

-2 (2) cos (¢ —9)+a7—

u(r,0 )= i{ foh ﬂf@ﬂ) do

a2—2arcos (p—0)
This is the Poisson’s integral formula for a circle.

Exterior Dirichlet Problem for a circle:

The exterior Dirchelet’s problem is described by
V'¢=00<6<2n

with ¢(a,8)= (6) 0<0<2r atr=a

where f(8) is a continuous function of 8 on the surface r = a and ¢ must be
bounded as r — oo.

The solution is of the form

#(r.0)= Z(Cn r'+D. r’”) (A, cosne+ B, sinng)

n=0
As r— oo ; @(r, 0) exists finitely
~C,=0vn

(r,0)= ir"”(Ancosn¢9+ B, sinno)

n=0

=%+ ni;lr”(ancosn6’+bnsin no) (1)

Now by the given condition

f(9)= %+ ia’"(ancosn0+bnsin n@) ..(2)

n=1
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Draft PDE Lecture Notes

2z

a,=— | kv

o

a,- 2 [ tw)cosniy v

o

o0

LetC = Z(%T cosn(y —0)

n=1

o0

AndS = Z[%)n sinn(y —6)

n=1

n=1

Therefore C + iS = Z{(%)ei(w—a)}

a iw-9
- r

B a iy-0
1_7el(l// )
r

Now by rationalising and comparing real parts on both sides we get
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2

&rlcos(z//—e)—a2

c= r_
1—§cos(v,z/—9)+i2
r r
2
, ?cos(gu—é’)—az
1% 1
#r.0)== [ty )+ L ydy (4)
7% 2 2a a
1-—cosly —0)+—;
r r

1% (r-a)fedy
27 5 p*—2arcosy —0) + g’

INTERIOR NEUMANN PROBLEM FOR A CIRCLE
The interior Neumann problem for a circle is defined as follows:

To find the value of U at any point in the interior of the circle r=a such that

V'u=0, 0<r<a 0<6<2m
And u_ au(r.9) =g(0) onr=a
on or

By the method of separation of variable the general solution of the given equation is
given by

= i(cn r'+D.r (A cosno+B sinno)
=0
At r=0 the solution u should be finite and therefore D,=0 V n

Therefore u(r,6)= ZI‘ (q,cosn6+p,sinns)

u(r,0)= +Zr (g, cosn6+p, sinnd)
Therefore —=i (ancosn9+bnsin ne)
=1
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Now ou(r,0) =g(#) where
or
1 2z
A= j g(¢)cosngdg
1 % :
b= j g(¢)sinngdg
Therefore

n

u(r,@):%+i

n-1

r fg(¢)[cosn¢cosn¢9+sin ngsinnojdg
nma"* |

Home Assignment

Exercise: By separating the variables, show that the equation V?v = 0 has a solution
of the form A exp(+nx + iny) where A and n are constants

Deduce that the function is of the form

—TTX rT
v(x,y) = ) A,e a sin(Ty) x=20, 0<y<a

r

Where A,'s being constants are plane harmonic functions satisfying the conditions
v(x,0) =0, v(x,a)=0, v(x,y)—0, asx > oo

Exercise: A thin rectangular homogeneous thermally conducting plane occupies the
region0 <y <b, 0 <x <a.Theedge y = 0 is held at temperature t(x)(x — a),
where T is a constants and other edges are maintained at '0’. The other faces are
insulated and there is no heat source or sink inside the plate. Find the steady state
temperature inside the plate.

Sol. Pleases try yourself.

PARABOLIC DIFFERENTIAL EQUATIONS

The have equation of the form Rr + Ss + Tt + f(x,y,z,p,q) = 0 with S? — 4RT =
0 is known as parabolic differential equation. The diffusion phenomenon such as
conduction heat in solids and diffusion of viscous fluid flow as generated by a PDE of
parabolic type.
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The general equation for heat transfer is governed by the following equations

o _ kV2T
ot

aZ

~— represents the derivative

aT . . ; ; 2 92 92
Where — is the time derivative and V*= — + — +

at 0x dy
w.r.t., space.

2
Heat Equation: The heat conduction equation Z—: = kZTZ

May have numerous solutions unless a set of initial and boundary conditions are
satisfied. The boundary conditions are mainly of three types and are briefly given
below.

Boundary condition I: The temperature is prescribed all over the boundary surface.
This type of boundary condition depends on the problem under investigation. Some
times the temperature on the boundary surface is a function of position only or is a
function of time only or a constant. A special case includes T(r, t) = 0 on the surface
of boundary, which is called a homogenous boundary condition.

Boundary condition I1: The flux of heat, i.e. the normal derivative of temperature g—z
is prescribed on the surface of boundary. This is called the Neumann condition. A
special case includes Z—: =0 on the boundary.This homogenous boundary condition is

also called insulated boundary condition which states that the heat flow across the
surface is zero.

Boundary condition I11: A linear combination of the temperature and the heat flux is
prescribed on the boundary

. ar _
ie. K o +ht =G(x, t)

this type of boundary condition is called Robins condition. It means that the boundary
surface dissipates heat by convection. By Newton’s law of cooling, we have

aT
K- = h(T-T,)
T, is the temperature of surrounding

Its special case may be taken as

oT
K— + hT =0
on
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Which is homogenous boundary condition.

The other boundary conditions such as the heat transfer due to radiation obeying the
fourth power temperature law and these associated with change of phase like melting,
ablation etc. give rise to non linear boundary conditions.

SEPARATION OF VARIABLE METHOD:

We consider the one dimensional heat conduction equation

d 92
ko ()
let T(x,t) = X(x)Y(t) -(2)

be the solution of the differential equation (1) substituting from (2) into (1) we obtain

XY" = %% = 1 (separation parameter) then we have
azx" _
— —AX=0 -(3)
&_ KAy =0 .(4)

dt

In Solving equations (3) and (4) three distinct cases arise.

Case I: Let-1>0, say a? the solution will have the form
X = Cre% + Coe 9% Y = Cae@’kt ..(5)
Case Il: let 1 = - a?, a is positive, then solution will have the form
Which provide us X = C; cos ax+ C, sinax, and Y = Cae—a’kt ...(6)
CASE I111: let 1 =0 then we have

X=Cix+Cp Y =Cs -(7)

Thus various possible solutions of the one dimensional heat conduction equation (1)
are

T(x,t) = (Ae®+Be%) gka’t

T(x,t) = (Acosax + Bsinax)e * kt ...(8)
T(x,t) = (Ax+B) where A=C;Cs B=-C,Ca
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Example 2: Show that the solution of the equation

oT  9°T

Satisfying the conditions

1) T—->0,at—>
2 T=0,forx=0andx=aforallt>0
3) T=x,whent=0and 0 < x < ais

T(x,t) =2aln¥=_(=1)""1/n)sin (% x) exp[-(nm /a)? 1]

Solution: we know that the solution of (1) is

[1] T(x,t) = (Ae™ +Be™™ ) exp (a?t)
[2] T(x,t) = (Acosax + Bsinax) exp ()
[3] T(x,t) = Ax + B

Clearly solutions represented by (1) and (2) does not satisfy the given conditions.
Therefore the most feasible solution for the equation (1) can be treated (2)

T(x,t) = (A cosax + B sinax) e‘“ztusing the boundary condition (2) we have
0=[A(l) +B(0)] e "t

Or0=Ae "

OrA=0

Also T(0,t) =0 = (B sin aa)e %"t

Since B# 0 and e~ # 0

= sinaa=0

=aa =Nm or a =nm [a

Hence the solution is of the form

T(x, t) =Bsin (%x) et

= Bsin (%x)exp(— ”i’;z t)
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Since the heat conduction equation is linear therefore the most general solution is
obtained by applying the principle of superposition

ie. T(x, )= X%_; Bysin (% x) exp(— nzfz t)

now using condition (3) we get

T=x fort=0
= X== )71 Bnsin (%x)X1 (~t=0)
Which is a half range Fourier sine series therefore B, = 2/a foa xsin(%x) dx
LetZx=z

a
Zdx=dz
a
Forx=0,z=0
Forx=a,z=nm

2 nmw a? .

Therefore B, = = [ — zsinzdz

2a _1n+1

T n

_q1\yn+1 22
Therefore T(x,t) = 2;“2?{’:1( D sin (%X) exp(— naTZT t)

n

EX: The ends A and B of arod, 10 cm in length are kept at temperature 0° and 100°
c respectively until the steady state conditions prevails. Suddenly the temperature at
the end A is increased to 20° ¢ and the end B is decreased to 60° c. Find the
temperature distribution in rod at time at t.

Sol. The problem is described by

aT_, 3%T
—=k — ' 0<x<
" kax2,0x10

Subject to the conditions
T (0,t) = 10

T(10,t) = 100
2
For steady state ZTT =0

2
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Which implies that Ts= Ax + B

Now forx =0, T=0 impliesthat B =0, Therefore Ts = Ax
And for x =0, T=100°C, implies that A = 10

Thus the initial steady temperature distribution in rod is

Ts(x) = 10x

Similarly when the temperature at the ends A and B are changed to 20% and 60°C,
the final steady temperature in rod is

Ts(x) =4x + 20
Which will be attained after long time. At any instant of time the temperature
T (x,t) inrod is given by

T(x,t) = Ti(x,t) + Ty(x)

WhereT; (x, t) is the transient temperature distribution which tends to zero as
t - oo. Now T'(x,t) satisfies the given partial differential equation. Hence its
general solution is of the form

T(x,t) = Ti(x,t) + Te(x)
T(x,t) = 4x + 20 4+ e ¥**t (B cos Ax + C sin Ax)
Forx =0, T=20°C, we obtain
20=20+Be K"t B=0, t>0
Forx=10, T=60° we get
60 = 60 +e K4*(C sin 10 A
=sin104=0 = A== nel

The principle of superposition yields

- 2
T(x,t) = 4x + 20 +ZCn exp {— k(i—gj t}sin(rl]—g xj

n=1

using the initial condition T = 10 x, whent=0, we obtain
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10x = 4x+20 + Y C, sin(rll—g xj
n=1

Where Cy = 2 ["(6x~ zo)sin(”—” xjdx
10 o 10

_ -1 n800 200
5 [(_1) nz nﬂ:l
Thus the required solution is

2
_ 1 [0 207 ool (07 |07
T(x,t) = 4x + 20 — ) {({L)E_E} exp{ k(loj t}m(lo xj

Diffusion equation in cylindrical coordinates
Consider a three dimensional diffusion equation

8_T = KV?T

ot

In cylindrical coordinates (r, 6, z) it become

10T 0° 10T 10°T o°7T

——=—2+——+—2—2+—2 (1)

kot or® ror r°o00° oz

We assume separation of variables in the form
T(r,0,z) = R(r) ®(6)Z(z)?(t)
Substituting this in (1), we get
R!! l R! l @!! Z” l ¢I
—+ +—==1=

2
R rR r’e z k¢_ﬂ“

Where —A? is a separation parameter.
Then ¢’ +kip?=0 .(2)

"

R_”+£E’+i®”+ﬂz:_2_:_lu2 (say)
R rR r?o z
The equation in Z, R and ©® becomes
2" —1’72=0 ..(3)
" 1 R, 2 2 2 ®” 2
F+FE+(A/ +u )r :_EZQ
Therefore
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0"+0*O=0 ..(4)

1 2 2 QP
And R"+=R'+ + —-— R=0 ...(6
R 2w ©

Equations (2) and (4) have particular solutions of the form
b= e-k/qft

©=(CcosQ@ +DsinQ)
z=A@"“+Bg”

Equation (5) is Bessel’s equation of order Q and its general solution is

R0= C, 3o 1 J+ C¥ o (A 7+ 40

Where ] (r)andY (r) are Bessel functions of order Q of first and second kind

respectively. Equation (5) is singular for r = 0, the physically meaningful solution
must be twice continuously differentiable in 0< r < a.
Hence equation (5) has only one bounded solution

ie. RMO=]J 9(1 (52— U0 ’r)

Finally the general solution of equation (1) is given as

T(r,0,zt) =exp (— K ﬂzt)[Ae"z + Be”z][(c cosQ0 + DsinQ0) jQ,/(ﬂ,z—luz)r}
.(6)

Assignment

EX: Find the solution of the diffusion equation

a_T = KVZT

ot

Ex: A uniform rod of length | with thermally insulated surface is initially at

temperature 6 = 6, At t=0, one end is suddenly cooled to #=0°C

And subsequently maintained at this temperature, the other end remains thermally
insulated. Find the temperature distribution 6 (x, t).

EX: Find the solution of the 1-D diffusion equation satisfying the following
conditions

(i) Tisboundedast — oo

. ar
(i) axZO—O, Vit
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(iii) T(x,0) = x(a — x); 0<x<0
EX: Solve the boundary value problem

ou 0% 0<r<t
ot~ ¢ ax2 *
Subject to the conditions
(I) aua(;)‘t) —0

.. ou(l,0)
(i) = 0

@) u(x,0)=x
EX: Solve the following equation

ou 0%u
at  ox?
Subject to the conditions
Q) u(x,0) = 3sinnmx
(i) u(0,t) =0=u(lt), 0<x<l t>0.

EX: Find the solution of the equation

ou 0%u
at  ox?
Subject to the conditions
(i) u(x,0) = 3sinnnx
(i) u(0,t) =0 =u(l,t), 0<x<l t>0.

EX: Find the solution of the equation

ov 0%v
— =k —
ot 0x?
Subject to the conditions
Q) v =vysinnt wherex =0 Vt

(i) v=20 X > o

HYPERBOLIC DIFFERENTIAL EQUATIONS:
One of the most important and typical homogenous hyperbolic differential equation is
the wave equation of the form

2
u
—(;tz =c’Vu

Where C is the wave speed.
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The differential equation above is used in many branches of physics and
engineering and is seen in many situations such as transverse vibrations in strings or
membrane, longitudinal vibrations in a bar, propagation of sound waves,
electromagnetic waves, sea waves, elastic waves in solid and surface waves in earth
quakes.

The solution of wave equations are called wave functions.
Remark: The Maxwell’s equations of electromagnetic theory is given by
V.E =4nP

V.H=0
yxE=_tH
C ot
yxfo4A, Lat
C Cot

Where E is an electric field, p is electric charge density, H is the magnetic field, C is
the current density and C is the velocity of light.

Exercise : show that in the absence of a charge, the electric field and the magnetic
field in the Maxwell’s equation satisfy the wave equation.

Solution: we have

Consider Vx(Vx E):Vx __18_H
C ot

L -10%E
This implies Vx(VxE)=——
P ( ) C? ot?

But V x(V x E) Can be expressed as
V(V-E)-V’E =V(4p)-V’E

=-V?E

2
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2
o’k =C?V’E

5=

Or

Which is a wave equation satisfied by E

Similarly we can observe the magnetic field H satisfies the wave equation

2
aH—czvzH.

=

Solution of Wave equation: (Method of separation of variables)

We have —=C"— ..(1)

Let U(x, t) = X(x) T(X) be the solution of (1)

2 2,
68 = XT" and ag =TX"

ot OX
Using in (1),we get
XT"=C?*TX" :T—:C2 X =1 (say)

T X

Where A is a separation parameter
=>T"-AT =0 (2)
And C2X"—AX =0 ..(3)
T=Ae'" +Be™*
CASEIL:If >0 say A=k”
Therefore T = Ae® +Be™ (4

Similarly

C2X"—-K?X =0

X (x) = Degx + Ee‘%X
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~U(xt) = (AeKt+Be_Kt)(De%X+Ee%X)
This is the required solution

Casell:if A=0

Then T"=0 and C*X"=0

=T=Ct+D and X =Ax+B

Therefore U(x,t) = (Ax+B)(Ct+D)
Case lll: If A<0 say A=-K?

" 2 "
:>T?:—K2 and CX

=T"+K*T=0 and C?X"+K?*X =0
So T = (AcosKt + BsinKt) and X:(Dcos%x+ Esin%xj

Therefore U(x, t) =(AcosKt + Bsin Kt) [Dcos%x + Esin%x)

REMARK: From the above solutions of the wave equation for 0 < x < land t > 0
Subject to the conditions
U0,t) =0;t >0,
ul,t)y =0
Using the conditions in case |
0 =UQH = (Ae“+Be ' )(D+E)
= D+E=0 ..(5)

Now U(l, t) =0

LY LY
= U(I,t)=(AeKt+BeKt)(DeC + Ee° J:O
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K K,
= | De¢ +Ee¢ |=0

2K
= Degc +E=0

K
= eZE' =1 By comparing coefficients in (5) and (6)

L S S S
C C

Either | =0 or 5=0
C

Therefore solution in case (1) is not acceptable
Now using in case Il we get

0=U (0, t) =(C t+ D)B

=B=0

And0 = U(l,t) = (Al+B)Ct+D)

— (Al +B)Ct+ D) =0

Implies A =0

Implies A=0=B

Now using the conditions in case IlI

U(x, t) = (Acos Kt + Bsin Kt) (Dcos%x+ Esin%xj

Now U (0,t) =0
= (AcosKt + BsinKt)(D) =0

= D=0

Also 0 = U (I, t) :(ACOSKt+BSin Kt)(Esin%lj

Department of Mathematics, University of Kashmir, Srinagar-190006

Khanday M.A.

..(6)

51



Draft PDE Lecture Notes Khanday M.A.

ﬁ(EsinEIj=0
C

~Uxt)= (Acos Kt + Bsin Kt) (EsinnT” xj

Therefore by using superposition principle

U, xtH=> Ensin(nl—ﬂ xj(Anco{CnTﬂj t+ anin[cnl—”j tj

Ex: By the separation of variables, show that one dimensional wave equation
0’Z _ 1 9°Z
ox?  c¢? ot?

Has solution of the form Aexp(+ inc + inct)
Where A and n are constants. Hence show that the function of the form

S P

Where A .and B _are constants, satisfying the wave equation and the boundary

conditions
Z(0,t) = 0= Z(a,t); t>0
Ex: Obtain the solution of the radio equation

2 2
OX ot

Appropriate to the case when the periodic e.m.f. V, cos(pt) is applied at the end x=0

of the line.
Exercise: A tightly stretched string with fixed end pointsx =0 andx = [ is
initially in a position given

Y=Yo Sins(lﬁJ

It is released from rest from this position.
Find the displacement y(X,t)
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Sol. We have the wave equation
o'y 1Yy
ox?  C? ot?

Suchthat  y(0,t)=0=y(l,t)
And y(x,0) =Y, sin{%}

And at t=0

ay_y

dt

Let y(x, t) = X(x) T(t) be the solution
Then

o'y _; 0°X

o

2 2:
O’y _ T

N X

and

We have
DU:é%XV

Therefore

y(x,t) = (Acos Ax + Bsin Ax)C cos Act + Dsin Act)

Now,
y(0,t)=0

= A(Ccos Act + Dsin Act)=0

=A=0
and y(x,t) = (Bsin Ax)(C cos Act + Dsin Act)
y(x0) _,
ot
And
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0= (%) =[(Acos Ax + Bsin Ax ) AcD cos Act — AcCsin Act )],
t=0

= (Acos Ax + Bsin Ax)1cD) =0
=D=0

Thus

y(x,t) = Esin AxcosAct
Where E = B¢
= EsinAlcosAict =0

= sinAl=0
= MlM=nr
= /lzn—”

I
y(x,t)=>" Ensin(nl—” xj cos(nTﬂctj
By the given condition

y(x,0) =y, sins(% xj

Therefore

yosin‘”’(lzxj:ZEn sin(nl—ﬂxJ

= Elsin(lZ x]+ E, sin(zl—” xj+ E, sin(sl—”jx+...

We know that

. 3 3sin X —sin 3x
sin x=f

Or
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37X

St PRTINE NN

4

Now comparing the coefficients on both sides we get

3y -y
ElzTo’ E, =0, E3:TO, E,=E;=..=0

Sy(xt) = %sin(ﬁj cos(zjct - ﬁsin(g—ﬂxj cos(zjct
4 I I 4 I I

This is the required solution.

PERIODIC SOLUTION IN CYLINDERICAL COORDINATES:

In cylindrical coordinates with u depending only on r. The one dimensional wave
equation assume the form.

Lof) 1o

T ~2 42

ror or C- ot (1)
Assume that

U=F()e"

Acts as a solution

ouU , iwt
o F'(ne

oJ iwt
—r—=rF'(r
or (e

0 ou , iwt " iwt
E(rgj_ F'(ne +rF"(r)e

0%u i
2 = WFOe"

Now substituting in (1)we get
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%(F’(r) e rEr(ng™ )= é(— WFOe")

F'(r) +W_2
C2

= F"(n+ F(c)=0

Which is a form of Bessel’s equation and hence we have

sl

In complete form we can write this equation as

~clalzlzlle ]

Therefore the complete solution for the periodic function is
wr Wr iwt
U=JA — |[+B —
{ ‘Jo(cj yOKCJ}e

Cauchy problem for inhomogeneous wave eguation:

The wave equation

o%u o%u
U298 f(xt
ot? ox? (%)

Subject to the initial conditions

ou(x,0
u(e0) =0, XD 0
o’u ., 0%
and W—C W: f(X,t)

Subject to the homogenous initial conditions

au,(x,0) _

u,(x,0)=0 and 0

Integrating equation (2) over the region we get
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ﬂ( <:2a ]dxdt_ﬂf(xt)dxdt
Using Greens theorem in plane we get
0 26U2 0 aU2
| = —=2 |——| —2 |dxdt = || f(x,t)dxdt
[15(C e | [ o= vy

=X —§(%dt+cz%dx}gf(x,t)dxdt N0

R

Where 2R denotes the boundary of the region R. The boundary R comprises of
three segments PB, PA and AB

dx
Along PB, e
dx
And along PA, T

Using these, we have from equation (4)
{C(%dH%dxj— §C(%dt +%dx) = [ £ (x,t)xc
s \ ot OX oy \ Ot OX o

We know that for any function Z=2(x, y)

dz :gdx+gdy
OX oy

= § Cdu, — § Cdu, = j j f (x,t)dxdt
BP PA R

= Cu,(P)—Cu,(B)—Cu,(A)+Cu,(P)= [[ f (x.t)dxdt

Using conditions given in (3), we have
u, (A) = uz(B) =0

Therefore we have

2Cu,(P)= j j f (x,t)dxdt

o x+et,ct
= u, :—j If(xt)dxdt

0 x— ct +ct
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Where P(Xotp) is any arbitrary point. From the initial conditions associated with the
homogenous system, we know that

X+ct

U, ) =5 Bl ct)+nlx -t~ [ule)e

X—Ct

Hence the complete solution of the inhomogeneous wave equation in one dimensional
system is given by
u(x,t)=u, +u,

Two Dimensional wave equation

Fu Fu_1 o
2 2 ~2 A2
OX oy C ot (1)

u(x,y,t)=X(x) Y(y)T(t)
Let

Be the solution of the of the above 2-D wave equation

Now

2 2 2
U vy, Sy, 8 vy
OX oy ot

Using in (1) we get

YT+ XTY = L Xy
C

Dividing throughout by XYT we get

X" YN LT”

X Y C°T

This will be true when each member will be a constant
Choosing the constant suitably we get

d?X

e +k*X =0

And
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d2y

e +L2X =0

So that

d’T

t2

+(K2+ )T =0

The solutions of these equations are
X =(C,cosKx+(C,sin Kx

Y =C,cosLy+(C,sinLy

And

T =C5005(w/ K+ Lz)ct+Cesin(,/ K+ Lz)ct

Hence the solution of two dimensional wave equation is
u(x,y,t= (Clcoskx+ C,sin kXXCSCOSLy—I— C,sin Ly)

(CSCo{mjct + Cgin(ﬂjctj

D’ Alembert’s solution of one dimensional wave equation:

Consider the IVP of Cauchy type described as

2 2
ZTLJ:CZZT?;—OO<X<OO, t>0 (1)
Subject to the initial conditions
ou(x,0
U(x,0) = n(x), %:V(X) (2

Where the curves on which the initial data 7(x) and v(x) are prescribed on the
x — axis. The functions 77(x) and v(x) are assumed to be twice continuously

differentiable.
We know that the general solution of the wave equation is of the form

u(x, t) = f(x+ct)+g(x—ct) ..(3)
Where f and g are arbitrary functions
Using the given conditions

U(x,0) =700 =T(x)+9(x) (8
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Also,
D v = Cl100-9'(]
ie. Clf'(x)-g'(x)] = v(x) ..(5)

integrating (5),we get
1 X
F(9-90) = v(s)ds -(6)
0
Now adding (4)and (6),we have
(), 1
f(x) = T+z£v(3)ds
Also subtracting (6) from (4), we have
_n(x) 17
g(x) = 7—2—C£v(s)ds

Substituting in (3) we get

U(x, t) = [@ + 2—1C XIC\t/(s)dsj + [M - 2—1C ch\t/(s)dsJ

X+ct
Ux,t) = ’7(’(*0‘); ”(X‘Ct)+2ic [v(s)as

x—ct
This is known as D' Alembert’s solution of one dimensional wave equation.

Note: If v=0 i.e. the string is released from rest, the solution takes the form

UG o) = n(x+ ct); n(x—ct)

DUHAMELS PRINCIPLE FOR WAVE EQUATION

STATEMENT: Let R®be the three dimensional Euclidean space and x = (x,, X,, X;)
be any point in R%. If v = V(X,t, ﬂ)satisﬁes for fixed A the partial differential equation
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OV _cryry—g *

o V= (%)

with the conditions

v(x,0,4)=0

%(X,O,ﬂ)= F(x, A) .. (1)

Where F(X, A) denotes a continuous function defined for x in R

ifu(x,t) = .t[v(x,t ~ 2, A0

Be any continuous function, then it satisfies
o%v
Ea

xeR3 t>0

C*V?v =F(x,4) .. (2)

au(x,0)

u(x,0)=0= p

Proof: We are given that V satisfies the wave equation
o%v
.

C*Vi =0

With the conditions given in (1)

Also for

t
u(x,t) = Iv(x,t —A,A)0A
0 ~(3)
To be the solution of (2) where v(x, t-A, 1) is one parameter family solution of (*)
Also v(x,0,A)=0 for t=A

Differentiating eq. (3) w. r. t., t under the integral sign and using Leibnitz rule we
have

t
%“ =v(x,0, 1) + ! %(x,t —2,A)dA

(4

Differentiating (4) again w. r. t., t we have

o%u

2
¥=Vt(x,0,ﬂ)+ % (xt—4,2)dA

O —
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using (*)

Finally we have from eq. (3)

vzu{vzv
0y 0OV
= %—szzu =v,(x0.2)
= 56:2“ _C'VAu=F(x0,2)

Clearly u(x,0) = 0 and
8u(x,0):0
ot

Khanday M.A.

The function v(x, t, 1) is called the pulse function or the force function.

Exercise: A rectangular membrane with fastened edge makes transverse vibrations.

Explain how a formal series solution can be obtained.

Sol: The given equation in 2-D is given by

0%u " 0%u 0%u
FZC ﬁ-l_a_yz OSxSa

0<y<b

Subject to the boundary conditions

u(0,y,t) =u(x,0,t) =ulx,b, t) =ula,y,t) =0

And initial conditions

u(x,y,0) = f(x,y)

ou(x,y,0)

5t =g(xy)

Letu(x,y,t) = X(x)Y(y)T(t) be the solution of (1)
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%u

" %u " 92%u "
Then Pyl X YT,W = XY T'ﬁ = XYT

Substituting theses in (1) we get

1T X' Y o
CZT—X+Y— A4 (say)

Then T  +2A%¢*T =0
= T(t) = E cos(Act) + F sin(Act)
Xll yll

A 5
and X+Y A

14 14

2 iz _ 1 _ 2
:>X+A = H (say)

X' a2 2 Yyt _ .2

Then X+/’l =pu and — = U
>X +(2-uHXx=0 and Y' +u2Yy =0

> X=A4 cos(m x) + B sin(Mx)
and Y = Ccos(uy) + D sin(uy)
put A=r, A —u2=p, pu=qin(2), (3) and (4) we get
X(x) = Acospx + B sinpx
Y(y) = Ccosqy + Dsinqy
T(t) = Ecosrt + Fsinrt
Thus the solution is given by
u(x,y,t) = (Acospx + Bsinpx)(C cosqy + D sinqy)(E cosrt
Now using the boundary conditions u(0,y,t) =0, weget A= 0.
Also u(x,0,t) =0, =C=0

And u(a,y,t) =0 = sin(pa) =0
mm
=>pa=mm=p= T

Also u(x,b,t) = 0 = sin(gh) =0
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nm
= qb =nt > qz?

Now using the principle of superposition we get,

u(x, y,t) = Yoor -1 Yomeq[Amn cos(rct) + B, sin(rct)] [sin%x] [sin%y]
(A)

2 _ .2, 2 _ _2[m* n*
where r“=p°+q*=m [a2+b2]
The initial condition [using in (A) ]

u(x,y,0) = f(x,5)

which implies

fY) = Bins ity B [sin =5 [sin Sy - (®)
And also w =g(xy)

g, y) =crXm_12m—1Bmn [sin%x] [sin%y] .(C)
where

a b
B, = a:crof Of g(x,y)sin (? x) sin (% y) dxdy

Hence (A), (B)and (C) give the required solution.

2 2
Exercise: Solve the I\VP described by ZTZ — ¢? 27’; = e¥, given that u(x,0) =
5, ou (x,0) _ xz
at

Sol: Please try self.
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