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Chapter 2 

PARTIAL DIFFERENTIAL EQUATIONS OF SECOND ORDER 

INTRODUCTION: An equation is said to be of order two, if it involves at least one 

of the differential coefficients r = (𝜕2
z / 𝜕2

x),  s = (𝜕2
z / 𝜕x 𝜕y),  t =(𝜕2

z / 𝜕2
y),  but 

now of higher order; the quantities p and q may also enter into the equation. Thus the 

general form of a second order Partial differential equation is  

 𝑓( 𝑥, 𝑦, 𝑧, 𝑝, 𝑞, 𝑟, 𝑠, 𝑡)  = 0           ...(1) 

The most general linear partial differential equation of order two in two independent 

variables x and y with variable coefficients is of the form 

 𝑅𝑟 +  𝑆𝑠 +  𝑇𝑡 + 𝑃𝑝 + 𝑄𝑞 + 𝑍𝑧 =  𝐹                                             . . . (2) 

where 𝑅, 𝑆, 𝑇, 𝑃, 𝑄, 𝑍, 𝐹 are functions of 𝑥 and 𝑦 only and not all 𝑅, 𝑆, 𝑇 are zero. 

Ex.1:  Solve 𝑟 =  6𝑥. 

Sol. The given equation can be written as 
𝜕2𝑧

𝜕𝑥2    =  6𝑥      ...(1) 

Integrating (1) w. r. t.         𝑥
𝜕𝑧

𝜕𝑥
 =  3𝑥2  +  ∅1(𝑦)               ...(2) 

where  ∅1(𝑦) is an arbitrary function of 𝑦. 

Integrating (2) w. r. t. we get 

 𝑥 𝑧 =  𝑥3  +  𝑥 ∅1(𝑦)  +  ∅2(𝑦)   

where ∅2(y) is an arbitrary function of y. 

Ex.2. 𝑎𝑟 =  𝑥𝑦 

Sol: Given equation can be written as 
𝜕2𝑧

𝜕𝑥2 =
1

𝑎
𝑥𝑦        ...(1) 

Integrating (1) w. r. t.,   𝑥, we get 

 
𝜕𝑧

𝜕𝑥
 = 

𝑦

𝑎
 

𝑥2

2
 + ∅1(y)                        ...(2) 

where  ∅1(y) is an arbitrary function of y 

Integrating (2) w. r. t., x,  

        z =  
𝑦

𝑎
 

3

6
 + x ∅1(y) + ∅2(y)   
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or       z = 
𝑦

2𝑎
 + x ∅1(y) + ∅2(y)   

where ∅2(y) is an arbitrary function of y. 

Ex.3:  Solve  r = 2y
2
 

Sol:     Try yourself. 

Ex. 4. Solve 𝑡 = sin(𝑥𝑦) 

Sol. Given equation can be written as 
𝜕2𝑧

𝜕𝑦2  = sin(𝑥𝑦)...(1) 

Integrating (1) w. r. t.,    y 

𝜕𝑧

𝜕𝑦
  = −  

1

𝑥
 cos(𝑥𝑦)  +   ∅1(𝑥)        . . . (2) 

Integrating (2) w. r. t., y 

 𝑧 =  −  
1

𝑥2 sin 𝑥𝑦   +  𝑦 ∅1 𝑥 +   ∅2 𝑥  

which is the required solution, ∅1, ∅2 being arbitrary functions. 

Exercises:𝑥𝑦𝑠 = 1 

Sol: We know that 𝑠 =
𝜕2𝑧

𝜕𝑥𝜕𝑦
 

Therefore       𝑥𝑦
𝜕2𝑧

𝜕𝑥𝜕𝑦
= 1 

or               
𝜕2𝑧

𝜕𝑥𝜕𝑦
=

1

𝑥𝑦
 

Integrating w.r.t.,  y we have 

𝜕𝑧

𝜕𝑥
=

1

𝑥
log 𝑦 + 𝑓 𝑥  

Again integrating w.r.t., x we get 

𝑧 = log 𝑥 log 𝑦 +  𝑓 𝑥 𝑑𝑥 + 𝐹 𝑦  

0r                                        𝑧 = log 𝑥 log 𝑦 + 𝑔 𝑥 + 𝐹 𝑦  
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Exercises:2𝑥 + 2𝑦 = 𝑠 

Sol: The given equation can be written as  

𝜕2𝑧

𝜕𝑥𝜕𝑦
= 2𝑥 + 2𝑦 

Integrating w.r.t., 𝑦, we have 

𝜕𝑧

𝜕𝑥
= 𝑦2 + 2𝑥𝑦 + 𝑓 𝑥  

Integrating w.r.t., 𝑥, we have 

𝑧 = 𝑦2𝑥 + 𝑥2𝑦 +  𝑓 𝑥 𝑑𝑥 + 𝐹 𝑦  

∴ 𝑧 = 𝑦2𝑥 + 𝑥2𝑦 + 𝑔 𝑥 + 𝐹 𝑦  

Exercises:𝑥𝑟 + 𝑝 = 9𝑥2𝑦3 

Sol:  The given equation can be written as  

𝑥
𝜕2𝑧

𝜕𝑥2
+ 𝑝 = 9𝑥2𝑦3 

⇒ 𝑥
𝜕𝑝

𝜕𝑥
+ 𝑝 = 9𝑥2𝑦3 

⇒
𝜕𝑝

𝜕𝑥
+

𝑝

𝑥
= 9𝑥𝑦3         … (1) 

which is linear first order differential equation in 𝑝 

∴   I. F.  is  𝑒log 𝑥 = 𝑥 

Multiplying (1) by 𝑥  we get 

𝑥  
𝜕𝑝

𝜕𝑥
+

𝑝

𝑥
 = 9𝑥2𝑦3 

⇒ 𝑝𝑥 = 9  𝑥2𝑦3 𝑑𝑥 

⇒ 𝑝𝑥 = 9
𝑥3𝑦3

3
+ 𝑓 𝑦  

⇒ 𝑝𝑥 = 3𝑥3𝑦3 + 𝑓 𝑦  
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⇒ 𝑝 =
3𝑥3𝑦3 + 𝑓 𝑦 

𝑥
 

⇒
𝜕𝑧

𝜕𝑥
= 3𝑥2𝑦3 +

𝑓 𝑦 

𝑥
 

Integrating with respect to 𝑥  we get  

𝑧 = 𝑥3𝑦3 + 𝑓 𝑦 log 𝑥 + 𝐹 𝑦  

Exercises:𝑦𝑡 − 𝑞 = 𝑥𝑦 

Sol:  Please try yourself. 

Exercises:𝑡 − 𝑥𝑞 = 𝑥2 

Sol:  Please try yourself. 

Exercises:𝑟 = 2𝑦2 

Sol:  The given equation can be written as  

𝜕2𝑧

𝜕𝑥2
= 2𝑦2 

⇒
𝜕𝑝

𝜕𝑥
= 2𝑥2 

Integrating with respect to 𝑥 we get 

𝑝 = 2𝑦2𝑥 + 𝑓 𝑦  

⇒
𝜕𝑧

𝜕𝑥
= 2𝑦2𝑥 + 𝑓 𝑦  

Integrating we get 

𝑧 = 𝑦2𝑥2 +  𝑓 𝑦 𝑑𝑥 + 𝐹 𝑦  

⇒ 𝑧 = 𝑦2𝑥2 + 𝑥𝑓 𝑦 + 𝐹 𝑦  

Exercises:𝑡 = sin 𝑥𝑦  

Sol:  Please try yourself. 

Exercises:log 𝑠 = 𝑥 + 𝑦 

Sol: The given equation can be written as  
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log
𝜕𝑞

𝜕𝑥
= 𝑥 + 𝑦  

⇒
𝜕𝑞

𝜕𝑥
= 𝑒𝑥+𝑦  

⇒
𝜕𝑞

𝜕𝑥
= 𝑒𝑥𝑒𝑦  

Integrating w.r.t.  𝑥  we get   

𝑞 = 𝑒𝑥𝑒𝑦 + 𝑓 𝑦  

⇒
𝜕𝑧

𝜕𝑦
= 𝑒𝑥𝑒𝑦 + 𝑓 𝑦  

Integrating w.r.t., 𝑦, we get 

𝑧 = 𝑒𝑥𝑒𝑦 +  𝑓 𝑦 𝑑𝑦 + 𝐹 𝑥  

or                  𝑧 = 𝑒𝑥𝑒𝑦 + 𝑔 𝑦 + 𝐹 𝑥  

Exercises:𝑠 − 𝑡 =
𝑥

𝑦2 

Sol:  Please try yourself. 

Exercises:𝑡 + 𝑠 + 𝑞 = 0 

Sol: The given equation can be written as 

𝜕𝑞

𝜕𝑦
+

𝜕𝑝

𝜕𝑦
+

𝜕𝑧

𝜕𝑦
= 0 

Integrating with respect to 𝑦, we get 

𝑞 + 𝑝 + 𝑧 = 𝑓 𝑥  

⇒ 𝑝 + 𝑞 = 𝑓 𝑥 − 𝑧 

It is of the form     𝑃𝑝 + 𝑄𝑞 = 𝑅 

Its auxiliary system is  

𝑑𝑥

1
=

𝑑𝑦

1
=

𝑑𝑧

𝑓 𝑥 −𝑧
     …(1) 

From first two fractions of (1) we get  
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𝑑𝑥 = 𝑑𝑦 

⇒  𝑥 − 𝑦 = 𝑎 

From first and third fractions of (1) we get 

𝑑𝑥

1
=

𝑑𝑧

𝑓 𝑥 − 𝑧
 

⇒  𝑓 𝑥 − 𝑧 𝑑𝑥 = 𝑑𝑧 

⇒
𝑑𝑧

𝑑𝑥
= 𝑓 𝑥 − 𝑧 

⇒
𝑑𝑧

𝑑𝑥
− 𝑧 = 𝑓 𝑥  

It is first order linear differential equation in  𝑧 

Its integrating factor is     𝑒 𝑑𝑥 = 𝑒𝑥  

Therefore    𝑧𝑒𝑥 =  𝑓 𝑥 𝑒𝑥𝑑𝑥 

⇒ 𝑧𝑒𝑥 =  𝑓 𝑥 𝑒𝑥𝑑𝑥 + 𝑓 𝑦  

Exercise:𝑡 + 𝑠 + 𝑞 = 1 

Sol: Please try yourself. 

Exercise: Find the surface passing through the parabolas,   

𝑦2 = 4𝑎𝑥,          𝑧 = 0 

and         𝑦2 = −4𝑎𝑥,          𝑧 = 1 

and satisfying the equation    𝑥𝑟 + 2𝑝 = 0. 

Sol:  The given second order partial differential equation is  

𝑥𝑟 + 2𝑝 = 0 

⇒
𝜕𝑝

𝜕𝑥
+

2

𝑥
𝑝 = 0         … (1) 

It is first order linear differential equation in 𝑝. 

Its integrating factor is     𝑒 
2

𝑥
𝑑𝑥 = 𝑒2 log 𝑥 = 𝑒log 𝑥2

= 𝑥2 
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From (1) we get 

𝑥2𝑝 =  0 𝑑𝑥 

⇒ 𝑥2𝑝 =  0 𝑑𝑥 + 𝑓(𝑦) 

⇒ 𝑝 =
𝑓(𝑦)

𝑥2
 

Integrating w. r. t.  𝑥  we have 

𝑧 = −
1

𝑥
𝑓 𝑦 + 𝐹 𝑦         … (2) 

Using the given condition 𝑧 = 0,  𝑥 =
𝑦2

4𝑎
, in equation (2), we  have   

0 = −
4𝑎

𝑦2
𝑓 𝑦 + 𝐹 𝑦  

or           𝐹 𝑦 =
4𝑎𝑓 𝑦 

𝑦2         … (3) 

Also for 𝑧 = 1, and  𝑥 =
−𝑦2

4𝑎
,   we have from (2) we have 

1 =
4𝑎

𝑦2
𝑓 𝑦 + 𝐹 𝑦  

Using (3) we get 

or                    1 =
4𝑎𝑓 𝑦 

𝑦2 +
4𝑎𝑓 𝑦 

𝑦2  

⇒ 1 =
8𝑎𝑓 𝑦 

𝑦2
 

⇒ 𝑓 𝑦 =
𝑦2

8𝑎
 

Substituting 𝑓 𝑦 ,  in (3)    

𝐹 𝑦 =
4𝑎

𝑦2

𝑦2

8𝑎
 

⇒ 𝐹 𝑦 =
1

2
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Therefore from (1) we get 

𝑧 =
−𝑦2

8𝑎𝑥
+

1

2
 

Which is the required surface passing through the parabolas. 

Exercise: Find the surface satisfying 𝑡 = 6𝑥3𝑦  containing the two lines  

𝑦 = 0 =   𝑧and         𝑦 = 1 = 𝑧 

Sol: The given 2
nd

 order PDE is 

𝑡 = 6𝑥3𝑦 

⇒
𝜕𝑞

𝜕𝑦
= 6𝑥3𝑦 

Integrating w. r. t.,   𝑦,  we have 

𝑞 =
6𝑥3𝑦2

2
+ 𝑓 𝑥  

⇒
𝜕𝑧

𝜕𝑦
= 3𝑥3𝑦2 + 𝑓 𝑥  

Integrating w. r. t., 𝑦,   

𝑧 =
3𝑥3𝑦3

3
+ 𝑦𝑓 𝑥 + 𝐹 𝑥  

⇒ 𝑧 = 𝑥3𝑦3 + 𝑦𝑓 𝑥 + 𝐹 𝑥         …(1) 

Using given conditions 𝑦 = 0 = 𝑧,   in  (1),   we have 

0 = 0 + 0 + 𝐹 𝑥  

⇒ 𝐹 𝑥 = 0         … (2) 

Also using 𝑦 = 1 = 𝑧    in equation (1) we get,  

1 = 𝑥3 + 𝑓 𝑥 + 𝐹 𝑥  

Using (2), we get     1 = 𝑥3 + 𝑓 𝑥 + 0 

𝑓 𝑥 = 1 − 𝑥3         …(3) 

Using (2) and (3)  in (1) we get 
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𝑧 = 𝑥3𝑦3 + 𝑦 1 − 𝑥3  

Which is the required surface containing the two lines. 

Exercise: Find the surface satisfying 𝑟 + 𝑠 = 0,   and touching the elliptic paraboloid 

𝑧 = 4𝑥2 + 𝑦2   along the surface of plane   𝑦 = 2𝑥 + 1. 

Sol: From the given equation we have 
𝜕𝑝

𝜕𝑥
+

𝜕𝑞

𝜕𝑥
= 0. 

Integrating with respect to 𝑥,  we have  

𝑝 + 𝑞 = 𝑓 𝑦  

Now, the auxiliary system is  

𝑑𝑥

1
=

𝑑𝑦

1
=

𝑑𝑧

𝑓 𝑦 
    …(1) 

Taking first two fractions we get 

𝑑𝑥

1
=

𝑑𝑦

1
 

Integrating we get 

𝑥 = 𝑦 + 𝑎 

  ⇒                𝑥 − 𝑦 = 𝑎       …(2) 

Also from 2
nd

 and 3
rd

 fractions of (1), we get 

𝑑𝑦

1
=

𝑑𝑧

𝑓 𝑦 
 

⇒ 𝑑𝑧 = 𝑓 𝑦 𝑑𝑦 

⇒ 𝑧 = 𝜑 𝑦 + 𝑏 

or             𝑧 = 𝜑 𝑦 + 𝐹 𝑎  

⇒ 𝑧 = 𝜑 𝑦 + 𝐹 𝑥 − 𝑦         … (3) 

From (3), we get 

𝑝 =
𝜕𝑧

𝜕𝑥
= 𝐹′ 𝑥 − 𝑦            …(4) 

         q=
𝜕𝑧

𝜕𝑦
= 𝜑′ 𝑦 − 𝐹′ 𝑥 − 𝑦       … (5) 
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Since    𝑧 = 4𝑥2 + 𝑦2 

  ∴ 𝑝 =
𝜕𝑧

𝜕𝑥
= 8𝑥       …(6) 

&               q=
𝜕𝑧

𝜕𝑦
= 2𝑦        …(7) 

From (4) and (6)  

  𝐹′ 𝑥 − 𝑦 = 8𝑥       … (8) 

From (5) and (7)  

                  𝜑′ 𝑦 − 𝐹′ 𝑥 − 𝑦 = 2𝑦      … (9) 

Adding (8)  and  (9)   we get 

𝜑′ 𝑦 = 8𝑥 + 2𝑦 

=
8

2
 𝑦 − 1 + 2𝑦 

= 6𝑦 − 4 

Integrating w. r. t., 𝑦, we get 

  𝜑 𝑦 = 3𝑦2 − 4𝑦 + 𝑏        … (10) 

Also, from (8) 

−𝐹′ 𝑥 − 𝑦 = 8𝑥 = −8 𝑦 − 𝑥 − 1 =  8 𝑥 − 𝑦 + 1  

Integrating w. r. t.,  𝑥 − 𝑦  we get  

   −𝐹 𝑥 − 𝑦 = 4 𝑥 − 𝑦 2 + 8 𝑥 − 𝑦 + 𝑐   … (11) 

Substituting (10) and (11) in (3)  we get 

𝑧 = 3𝑦2 − 4𝑦 + 𝑏 − 4 𝑥 − 𝑦 2 − 8 𝑥 − 𝑦 + 𝑐 

= −4𝑥2 − 𝑦2 + 4𝑦 − 8𝑥 + 8𝑥𝑦 + 𝑑 

From the given condition, 

4𝑥2 +  2𝑥 + 1 2 = −4𝑥2 −  2𝑥 + 1 2 + 4 2𝑥 + 1 − 8𝑥 + 8𝑥 2𝑥 + 1 + 𝑑 

⇒ 8𝑥2 + 2 2𝑥 + 1 2 = 4 2𝑥 + 1 − 8𝑥 + 8𝑥 2𝑥 + 1 + 𝑑 

⇒ 8𝑥2 + 8𝑥2 + 2 + 8𝑥 = 8𝑥 + 4 − 8𝑥 + 16𝑥2 + 8𝑥 + 𝑑 



Draft  PDE Lecture Notes       Khanday M.A. 

Department of Mathematics, University of Kashmir, Srinagar-190006                                      11 
 

⇒ 𝑑 = −2 

Therefore             𝑧 = −4𝑥2 − 𝑦2 + 4𝑦 − 8𝑥 + 8𝑥𝑦 − 2 

which is required surface. 

Exercise: Show that the surface satisfying 𝑟 = 6𝑥 + 2  and touching 𝑧 = 𝑥3 + 𝑦3   

along its section by the plane 𝑥 + 𝑦 + 1 = 0   is     𝑧 = 𝑥3 + 𝑦3 +  𝑥 + 𝑦 + 1 2. 

Sol: Try yourself. 

Partial differential equations with constant coefficients: 

We know that the general form of a linear partial differential equation 

𝐴𝑛
𝜕𝑛 𝑧

𝜕𝑥𝑛 + 𝐴𝑛−1
𝜕𝑛 𝑧

𝜕𝑥𝑛−1𝜕𝑦
+ 𝐴𝑛−2

𝜕𝑛 𝑧

𝜕𝑥𝑛−2𝜕𝑦2 + ⋯ + 𝐴1
𝜕𝑛 𝑧

𝜕𝑦𝑛 = 𝑓 𝑥, 𝑦     … (1)  

Where the coefficients 𝐴𝑛 ,     𝐴𝑛−1,     𝐴𝑛−2,     .  .  .   , 𝐴1   are constants or functions 

of  𝑥   and   𝑦.  If  𝐴𝑛 ,     𝐴𝑛−1,     𝐴𝑛−2,     .  .  .   , 𝐴1 are all constants, then (1) is called 

a linear partial differential equation with constant coefficients.  

  We denote  
𝜕

𝜕𝑥
    and   

𝜕

𝜕𝑦
    by    𝐷  𝑜𝑟  𝐷𝑥    and   𝐷′ 𝑜𝑟  𝐷𝑦   respectively. 

Therefore (1) can be written as  

 𝐴𝑛𝐷𝑛 + 𝐴𝑛−1𝐷𝑛−1𝐷′ + 𝐴𝑛−2𝐷𝑛−2𝐷′2 +   …    +   𝐴1𝐷′𝑛  𝑧 = 𝑓 𝑥, 𝑦   … (2) 

or    𝜑 𝐷, 𝐷′ 𝑧 = 𝑓 𝑥, 𝑦  

The complementary function of (2)  is given by  

 𝐴𝑛𝐷𝑛 + 𝐴𝑛−1𝐷𝑛−1𝐷′ + 𝐴𝑛−2𝐷𝑛−2𝐷′2 + ⋯ +   𝐴1𝐷′𝑛  𝑧 = 0   …(3) 

or       𝜑 𝐷, 𝐷′ 𝑧 = 0 

Let  𝑧 = 𝐹 𝑦 + 𝑚𝑥    be the part of the solution 

 𝐷𝑧 =
𝜕𝑧

𝜕𝑥
= 𝑚𝐹′ 𝑦 + 𝑚𝑥                                                                                        

𝐷2𝑧 =
𝜕2𝑧

𝜕𝑥2 = 𝑚2𝐹′′  𝑦 + 𝑚𝑥  

..         ..          ..          ... 

..         ..          ..          ... 

..         ..          ..          ... 



Draft  PDE Lecture Notes       Khanday M.A. 

Department of Mathematics, University of Kashmir, Srinagar-190006                                      12 
 

  𝐷𝑛𝑧 =
𝜕𝑛 𝑧

𝜕𝑥𝑛 = 𝑚𝑛𝐹𝑛 𝑦 + 𝑚𝑥  

And  

  𝐷′𝑧 =
𝜕𝑧

𝜕𝑦
= 𝐹′ 𝑦 + 𝑚𝑥                                                                                

𝐷′2𝑧 =
𝜕2𝑧

𝜕𝑦2 = 𝐹′′  𝑦 + 𝑚𝑥  

...         ...          ...          ... 

...         ...          ...   ... 

...         …          ...          ...                                                                               

𝐷′𝑛𝑧 =
𝜕𝑛 𝑧

𝜕𝑦𝑛 = 𝐹𝑛 𝑦 + 𝑚𝑥  

Substitute these values in   (3), we get 

 𝐴𝑛𝑚𝑛 + 𝐴𝑛−1𝑚𝑛−1 + 𝐴𝑛−2𝑚𝑛−2 +   .   .   .    +  𝐴1 𝐹 𝑛  𝑦 + 𝑚𝑥 = 0 

which is true if ′𝑚′  is  a  root of the equation  

If  𝑚1, 𝑚2,          𝑚𝑛 ,   are distinct roots, then complementary functions is  

𝑧 = 𝜑1 𝑦 + 𝑚1𝑥 + 𝜑2 𝑦 + 𝑚2𝑥 +    .  .   .    +𝜑𝑛 𝑦 + 𝑚𝑛𝑥  

where  𝜑1, 𝜑2,    .  .  . ,     𝜑𝑛   are arbitrary functions. 

∴ 𝜑 𝐷, 𝐷′ 𝑧 = 0 

we replace 𝐷  by   m and 𝐷′ by  1   to get the auxiliary equation from which we get 

roots. 

Linear partial differential equations with constant coefficients 

Homogenous and Non homogenous linear equations with constant coefficients: A 

partial differential equation in which the dependent variable and its derivatives appear 

only in the first degree and are not multiplied together, their coefficients being 

constants or functions of x and y, is known as a linear partial differential equation. 

The general form of such an equation is  

 𝐴0
𝜕𝑛 𝑧

𝜕𝑥𝑛
+ 𝐴1

𝜕𝑛 𝑧

𝜕𝑦𝜕 𝑥𝑛−1
+ 𝐴1

𝜕𝑛 𝑧

𝜕𝑦2𝜕𝑥𝑛−2
+  .  .  .  +𝐴𝑛

𝜕𝑛 𝑧

𝜕𝑦𝑛
 +  𝐵0

𝜕𝑛−1𝑧

𝜕𝑥𝑛−1
+ 𝐵1

𝜕𝑛−1𝑧

𝜕𝑦𝜕 𝑥𝑛−2
+

𝐵1
𝜕𝑛−1𝑧

𝜕𝑦2𝜕𝑥𝑛−3 +  .  .  .  +𝐵𝑛
𝜕𝑛−1𝑧

𝜕𝑦𝑛−1 +  𝑀0
𝜕𝑧

𝜕𝑥
+ 𝑀1

𝜕𝑧

𝜕𝑦
 + 𝑁0𝑧 = 𝑓(𝑥, 𝑦)             ...(1) 
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where the coefficients A0, A1, . . .  An, B0, B1, . . . , Bn-1, M0,  M1 and N0 are all 

constants, then (1) is called a linear partial differential equation with constant 

coefficients. 

For convenience 
𝜕

𝜕𝑥
 and 

𝜕

𝜕𝑦
 will be denoted by D and 𝐷ʹ respectively. 

2.1.  Short method for finding the P.I. in certain cases of   F(D,D
ʹ
) z = f(x, y) 

2.1.a. Short method I. when f(x, y) is of the form ∅ ( ax + by )  

Ex.1.   Solve (D
2
 +3DDʹ +2D

ʹ2
)z = x + y 

Sol. The Auxiliary equation of the given equation is  

  m
2 

+3m +2 = 0 giving m = -1,-2 

therefore C.F. = ∅1(y-x) + ∅2(y-2x),    ∅1,  ∅2 being arbitrary functions 

Now         P.I.  = 
1

D2 +3DDʹ  +2Dʹ2

(x + y)      
 

               =  
1

12+3.1.1+2.12  𝑣𝑑𝑣𝑑𝑣, where v= x+y 

              =   
v2

2
 dv = 

1

6

𝑣3

6
 = 

1

36
 (x + y)

3
 

Hence the required general solution is z = C.F. + P.I. 

or z = ∅1(y-x) + ∅2(y-2x) + 
1

36
 (x + y)

3
 

Ex. 2. Solve (2𝐷2  − 5𝐷𝐷ʹ +  2𝐷ʹ2) 𝑧 =  24 (𝑦 –  𝑥 ) 

Sol: Try yourself 

Ex.3. Solve  (𝐷2  + 3𝐷𝐷ʹ + 2𝐷ʹ2)𝑧 =  2𝑥 + 3 𝑦 

Sol: Try yourself 

2.1.b.Short method II. 

When f(x,y) is of the form 𝑥𝑚𝑦𝑛  or a rational integral 

Ex.1. Solve (D
2
 –a

2
Dʹ2)z = x 

Sol. Here auxiliary equation is m
2 
–a

2 
= 0 so that m = a, -a  

Therefore   C.F. =  ∅1 𝑦 + 𝑎𝑥 + ∅2 𝑦 − 𝑎𝑥 ,                                  ...(1) 
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∅1,   ∅2 being arbitrary functions.  

Now P.I. =   
1

𝐷2− 𝑎2𝐷ʹ2
 𝑥 =  

1

𝐷2 1− 𝑎2 
𝐷ʹ2

𝐷2   
 𝑥  

                      =     
1

𝐷2
 1 − 𝑎2  

𝐷ʹ2

𝐷2
  

−1

 𝑥  

                     =     
1

𝐷2
[1 + a

2
 (D

ʹ2 
/D

2
) +...]x  

                    = 
1

𝐷2
x 

                    = 
x3

6
              ...(2) 

Hence the required solution is z = C.F. + P.I. 

 Z = ∅1(y+ a x ) + ∅2 (y-a x) + 
x3

6
 

Exercise: 1.2𝑟 + 5𝑠 + 2𝑡 = 0 

Sol: It is a second order pole with constant coefficients, we have 

2
𝜕2𝑧

𝜕𝑥2
+ 5

𝜕2𝑧

𝜕𝑥𝜕𝑦
+ 2

𝜕2𝑧

𝜕𝑦2
= 0 

or                 2𝐷2 + 5𝐷𝐷′ + 2𝐷′2 𝑧 = 0 

Now the auxiliary equations is given by 

 2𝑚2 + 5𝑚 + 2 = 0 

⇒ 𝑚 = −
1

2
  ,   -2        

Therefore the complementary function is  𝑧 = 𝜑1  𝑦 −
1

2
𝑥 + 𝜑2 𝑦 − 2𝑥  

which is required solution. 

Exercise: 2.𝑟 = 𝑎2𝑡 

Sol: Try Yourself     (Ans: 𝑧 = 𝜑1 𝑦 + 𝑎𝑥 + 𝜑2 𝑦 − 𝑎𝑥   ) 

Exercise: 3.
𝜕3𝑧

𝜕𝑥3
− 3

𝜕3𝑧

𝜕𝑥2𝜕𝑦
+ 2

𝜕3𝑧

𝜕𝑥𝜕2𝑦
= 0 

Sol: It is a third order pole with constant coefficients, we have 
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𝜕3𝑧

𝜕𝑥3
− 3

𝜕3𝑧

𝜕𝑥2𝜕𝑦
+ 2

𝜕3𝑧

𝜕𝑥𝜕2𝑦
= 0 

or                 𝐷3 − 3𝐷2𝐷′ + 2𝐷𝐷′2 𝑧 = 0 

Now the auxiliary equations is given by 

𝑚3 − 3𝑚2 + 2𝑚 = 0 

⇒ 𝑚 𝑚2 − 3𝑚 + 2 = 0 

⇒ 𝑚 𝑚 − 1  𝑚 − 2 = 0 

⇒ 𝑚 = 0,   1  ,   2        

Therefore the complementary function is  𝑧 = 𝜑1 𝑦 + 𝜑2 𝑦 + 𝑥 + 𝜑3 𝑦 + 2𝑥  

Which is required solution. 

Exercise: 4.
𝜕3𝑧

𝜕𝑥3 − 6
𝜕3𝑧

𝜕𝑥2𝜕𝑦
+ 11

𝜕3𝑧

𝜕𝑥𝜕2𝑦
− 6

𝜕3𝑧

𝜕𝑦3 = 0 

Sol: Try yourself   

Exercise: 5. 25𝑟 − 40𝑠 + 16𝑡 = 0 

Sol: Try yourself   

Exercise: 6. 𝐷4 − 𝐷′4 𝑧 = 0 

Sol: The auxiliary equation is given by 

𝑚4 − 1 = 0 

⇒  𝑚2 − 1  𝑚2 + 1 = 0 

⇒  𝑚 − 1  𝑚 + 1  𝑚 − 𝑖  𝑚 + 𝑖 = 0 

⇒ 𝑚 = 1, −1,   𝑖, −𝑖 

Therefore the complementary function is 

𝑧 = 𝜑1 𝑦 + 𝑥 + 𝜑2 𝑦 − 𝑥 + 𝜑3 𝑦 + 𝑖𝑥 + 𝜑4 𝑦 − 𝑖𝑥  

which is required solution. 

Exercise: 7. 𝐷3 − 4𝐷2𝐷′ + 4𝐷𝐷′2 𝑧 = 0 

Sol: Try yourself. 
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Exercise: 8. 𝐷2 − 2𝐷𝐷′ + 𝐷′2 𝑧 = 12𝑥𝑦 

Sol: The auxiliary equations corresponding to these linear system of equations is 

given by 

𝑚2 − 2𝑚 + 1 = 0 

⇒  𝑚 − 1  𝑚 − 1 = 0 

⇒ 𝑚 = 1, 1 

Therefore the complementary function is 

𝑧 = 𝑓1 𝑦 + 𝑥 + 𝑥𝑓2 𝑦 + 𝑥  

Also,      P. I.            =  
1

 𝐷−𝐷′ 2 12𝑥𝑦 

=
12

𝐷2
 1 −

𝐷′

𝐷
 

−2

𝑥𝑦 

=
12

𝐷2
 1 − 2

𝐷

𝐷′
+  

𝐷

𝐷′
 

2

 

−1

𝑥𝑦 

=
12

𝐷2
 1 −  −2

𝐷

𝐷′
+  

𝐷

𝐷′
 

2

 +       𝑥𝑦 

=
12

𝐷2
 𝑥𝑦 +

2

𝐷
𝑥  

=
12

𝐷
 
𝑥2𝑦

2
+

𝑥3

3
  

= 12  
𝑥3𝑦

6
+

𝑥4

12
  

= 2𝑥3𝑦+ 𝑥4 

Therefore the complete solution is     z=C. F. + P. I. 

i.e.,    𝑧 = 𝑓1 𝑦 + 𝑥 + 𝑥𝑓2 𝑦 + 𝑥 + 2𝑥3𝑦 + 𝑥4 

Exercise: 9. 2𝐷2 − 5𝐷𝐷′ + 2𝐷′2 𝑧 = 24 𝑥 − 𝑦  

Sol: Try yourself. 

Exercise: 10. 𝐷3 − 𝐷′3 𝑧 = 𝑥3𝑦3 
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Sol: The auxiliary equations is 

𝑚3 − 1 = 0 

⇒  𝑚 − 1  𝑚2 + 𝑚 + 1 = 0 

⇒ 𝑚 = 1,   
−1 + 𝑖 3

2
,   

−1 − 𝑖 3

2
 

Complementary function is    𝑧 = 𝜑1 𝑦 + 𝑥 + 𝜑2  𝑦 +
−1+𝑖 3

2
𝑥 + 𝜑3  𝑦 +

−1−𝑖 3

2
𝑥  

P. I.          =     
1

𝐷3−𝐷′3 𝑥3𝑦3 

                =     
1

𝐷3 1− 
𝐷′

𝐷
 

3
 
𝑥3𝑦3 

                =     
1

𝐷3  1 −  
𝐷′

𝐷
 

3

 
−1

𝑥3𝑦3 

                =     
1

𝐷3  1 +  
𝐷′

𝐷
 

3

+  
𝐷′

𝐷
 

6

+  .  .  .    𝑥3𝑦3 

                =     
1

𝐷3  𝑥3𝑦3 +  
𝐷′

𝐷
 

3

𝑥3𝑦3 +  
𝐷′

𝐷
 

6

𝑥3𝑦3 +  .  .  .     

                =     
1

𝐷3  𝑥3𝑦3 +
𝐷′2

𝐷3 3𝑥3𝑦2 + 0 +  .  .  .     

                =     
1

𝐷3  𝑥3𝑦3 +
𝐷′

𝐷3 6𝑥3𝑦  

                =     
1

𝐷3  𝑥3𝑦3 +
1

𝐷3 6𝑥3  

                =     
1

𝐷3  𝑥3𝑦3 +
1

𝐷2 6
𝑥4

4
  

                =     
1

𝐷3  𝑥3𝑦3 +
1

𝐷
6

𝑥5

20
  

                =     
1

𝐷3  𝑥3𝑦3 +
𝑥6

20
  

                =     
1

𝐷2  
𝑥4𝑦3

4
+

𝑥7

140
  

                =     
1

𝐷
 
𝑥5𝑦3

20
+

𝑥8

1120
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                =      
𝑥6𝑦3

120
+

𝑥9

10080
  

The complete solution is C.F. +  P.I. 

𝑧 = 𝜑1 𝑦 + 𝑥 + 𝜑2  𝑦 +
−1 + 𝑖 3

2
𝑥 + 𝜑3  𝑦 +

−1 − 𝑖 3

2
𝑥 +

𝑥6𝑦3

120
+

𝑥9

10080
 

Exercise:  Find the real function ′𝑣′  of   𝑥  and   𝑦 reducing to zero when 𝑦 = 0   and 

satisfying  
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
= −4𝜋 𝑥2 + 𝑦2  

Sol: We have to find the P. I.  only 

P. I.       =      
1

𝐷2+𝐷′2
 −4𝜋 𝑥2 + 𝑦2   

             =       
1

𝐷2 1+
𝐷′ 2

𝐷2  
 −4𝜋 𝑥2 + 𝑦2   

             =       
−4𝜋

𝐷2  1 +
𝐷′2

𝐷2  
−1

 𝑥2 + 𝑦2  

             =       
−4𝜋

𝐷2  1 −
𝐷′2

𝐷2 +  
𝐷′2

𝐷2  
2

+  .  .  .     𝑥2 + 𝑦2  

             =       
−4𝜋

𝐷2   𝑥2 + 𝑦2 −
𝐷′2

𝐷2
 𝑥2 + 𝑦2 + 0    

             =       
−4𝜋

𝐷2   𝑥2 + 𝑦2 −
𝐷′

𝐷2
 2𝑦   

             =       
−4𝜋

𝐷2   𝑥2 + 𝑦2 −
1

𝐷2
 2   

             =       
−4𝜋

𝐷2   𝑥2 + 𝑦2 −
1

𝐷
 2𝑥   

             =       
−4𝜋

𝐷2
  𝑥2 + 𝑦2 −  𝑥2   

             =       
−4𝜋

𝐷
 𝑥𝑦2  

             =       −4𝜋  
𝑥2𝑦2

2
  

             =       −2𝜋𝑥2𝑦2 

Theorem: If 𝑢1,   𝑢2,   𝑢3,    .  .  .    , 𝑢𝑛are the solutions of the homogeneous linear 

PDE    𝐹 𝐷, 𝐷′ 𝑧 = 0, then    𝑐𝑟𝑢𝑟
𝑛
𝑟=1    where 𝑐𝑟 ′𝑠 are arbitrary constants, is also a 

solution. 
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Proof: Since  ur ,  r=1,  2,  3,   .  .  . ,   n are solutions of the  PDE     𝐹 𝐷, 𝐷′ 𝑧 = 0 

So, we have  𝑢𝑟    is  one of the solutions  i.e.,  

𝐹 𝐷, 𝐷′ 𝑢𝑟 = 0 ,            𝑟 = 1, 2,   .  .   .  , 𝑛 

∴ 𝐹 𝐷, 𝐷′  𝑐𝑟𝑢𝑟 = 𝑐𝑟
′𝐹 𝐷, 𝐷′  𝑢𝑟  

and𝐹 𝐷, 𝐷′   𝑢𝑟 =  𝐹 𝐷, 𝐷′  𝑢𝑟  

∴   for any set of functions 𝑢𝑟 , we have 

𝐹 𝐷, 𝐷′   𝑐𝑟𝑢𝑟

𝑛

𝑟=1

 =  𝐹 𝐷, 𝐷′ 𝑐𝑟𝑢𝑟

𝑛

𝑟=1

 

=   𝑐𝑟𝐹 𝐷, 𝐷′ 𝑢𝑟

𝑛

𝑟=1

 

                                          =   0 

Therefore   𝑐𝑟𝑢𝑟
𝑛
𝑟=1   acts as a solution for the homogeneous system. 

 

Reducible and irreducible: 

If an operator  𝐹 𝐷, 𝐷′  can be expressed as a product of linear factors, it is said to be 

reducible. If it can not be factorised, then it is said to be irreducible.  

Theorem: If 𝛼𝑟𝐷 + 𝛽𝑟𝐷
′ + 𝛾𝑟    is a factor of 𝐹 𝐷, 𝐷′  and 𝜑𝑟 𝜉 , then  

𝑢𝑟 = 𝑒𝑥𝑝.  −
𝛾𝑟𝑥

𝛼𝑟
 𝜑𝑟 𝛽𝑟𝑥 − 𝛼𝑟𝑦   for 𝛼𝑟  is a solution of the equation  𝐹 𝐷, 𝐷′ 𝑧 =

0. 

Proof: The given equation is       𝐹 𝐷, 𝐷′ 𝑧 = 0  .  .  .      (1) 

In order to prove   𝑢𝑟 = 𝑒𝑥𝑝.  −
𝛾𝑟𝑥

𝛼𝑟
 𝜑𝑟 𝛽𝑟𝑥 − 𝛼𝑟𝑦 ;        𝛼𝑟 ≠ 0 .  .  .      (2) 

is a solution of (1), we have to prove     𝐹 𝐷, 𝐷′ 𝑢𝑟 = 0 

Diff. eq.(2) w.r.t.  𝑥  and  𝑦, we get 

𝐷𝑢𝑟 = −
𝛾𝑟

𝛼𝑟
𝑢𝑟  + 𝛽𝑟𝑒𝑥𝑝.  −

𝛾𝑟𝑥

𝛼𝑟
 𝜑′ 𝛽𝑟𝑥 − 𝛼𝑟𝑦  
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And  

𝐷′𝑢𝑟 = −𝛼𝑟𝑒𝑥𝑝.  −
𝛾𝑟𝑥

𝛼𝑟
 𝜑′ 𝛽𝑟𝑥 − 𝛼𝑟𝑦  

∴  𝛼𝑟𝐷 + 𝛽𝑟𝐷
′ + 𝛾𝑟 𝑢𝑟 = −𝛾𝑟𝑢𝑟  + 𝛼𝑟𝛽𝑟𝑒𝑥𝑝.  −

𝛾𝑟𝑥

𝛼𝑟
 𝜑′ 𝛽𝑟𝑥 − 𝛼𝑟𝑦  

−𝛼𝑟𝛽𝑟  𝑒𝑥𝑝.  −
𝛾𝑟𝑥

𝛼𝑟
 𝜑′ 𝛽𝑟𝑥 − 𝛼𝑟𝑦 + 𝛾𝑟𝑢𝑟 = 0 .  .  .      (3) 

Since  𝛼𝑟𝐷 + 𝛽𝑟𝐷
′ + 𝛾𝑟  is a factor of  𝐹 𝐷, 𝐷′  

Therefore   𝐹 𝐷, 𝐷′ 𝑧 = 𝑔 𝐷, 𝐷′  𝛼𝑟𝐷 + 𝛽𝑟𝐷
′ + 𝛾𝑟 𝑧,    using (3), we get  

𝐹 𝐷, 𝐷′ 𝑢𝑟 = 0 

Therefore 𝑢𝑟  is a solution of 𝐹 𝐷, 𝐷′ 𝑧 = 0 

Solution of Reducible Equations: 

Let 𝐹 𝐷, 𝐷′ 𝑧 = 𝑓 𝑥, 𝑦     .  .  .      (1) 

be a partial differential equation. Since  (1)  is reducible therefore 

𝐹 𝐷, 𝐷′ 𝑧 =   𝛼𝑟𝐷 + 𝛽𝑟𝐷
′ + 𝛾𝑟 𝑧

𝑛

𝑟=1

 

If 𝑧   satisfies  𝛼𝑟𝐷 + 𝛽𝑟𝐷
′ + 𝛾𝑟 𝑧 = 0, 𝑟 = 0, 1, 2,    .  .   .  , 𝑛,   then it gives us 

complementary function 

Now  𝛼𝑟
𝜕𝑧

𝜕𝑥
+ 𝛽𝑟

𝜕𝑧

𝜕𝑦
+ 𝛾𝑟𝑧 = 0 

The subsidiary system is 

𝑑𝑥

𝛼𝑟
=

𝑑𝑦

𝛽𝑟
=

𝑑𝑧

𝛾𝑟𝑧
 

From the first two members  

𝛽𝑟𝑥 − 𝛼𝑟𝑦 = 𝑐𝑟  

From first and last members we get 

𝑑𝑧

𝑧
= −

𝛾𝑟

𝛼𝑟
𝑑𝑥 



Draft  PDE Lecture Notes       Khanday M.A. 

Department of Mathematics, University of Kashmir, Srinagar-190006                                      21 
 

Integrating we get        log 𝑧 = −
𝛾𝑟

𝛼𝑟
𝑥 + 𝐴𝑟  

⇒ 𝑧 = log 𝛽𝑟 exp  −
𝛾𝑟

𝛼𝑟
𝑥  𝑒𝐴𝑟 = 𝛽𝑟  

⇒ 𝑧 = 𝜑 𝑟 exp  −
𝛾𝑟

𝛼𝑟
𝑥  

⇒ 𝑧 = 𝜑 𝛽𝑟𝑥 − 𝛼𝑟𝑦 exp  −
𝛾𝑟

𝛼𝑟
𝑥  

Also    

𝑑𝑧

𝑧
= −

𝛾𝑟

𝛽𝑟
𝑑𝑦  

⇒ 𝑧 = 𝜑 𝛽𝑟𝑥 exp  −
𝛾𝑟

𝛼𝑟
𝑦  

Example:  Let  𝛼𝑟𝐷 + 𝛽𝑟𝐷
′ + 𝛾𝑟 𝑧1 = 0   where    𝑧1 =  𝛼𝑟𝐷 + 𝛽𝑟𝐷

′ + 𝛾𝑟 𝑧 

𝑧1 = 𝜑 𝛽𝑟𝑥 − 𝛼𝑟𝑦 exp  −
𝛾𝑟

𝛼𝑟
𝑥  

⇒  𝛼𝑟𝐷 + 𝛽𝑟𝐷
′ + 𝛾𝑟 𝑧 = 𝜑𝑟 𝛽𝑟𝑥 − 𝛼𝑟𝑦 exp  −

𝛾𝑟

𝛼𝑟
𝑥  

⇒ 𝛼𝑟

𝜕𝑧

𝜕𝑥
+ 𝛽𝑟

𝜕𝑧

𝜕𝑦
= 𝜑𝑟 𝛽𝑟𝑥 − 𝛼𝑟𝑦 exp  −

𝛾𝑟

𝛼𝑟
𝑥 − 𝛾𝑟𝑧 

Auxiliary system is 

𝑑𝑥

𝛼𝑟
=

𝑑𝑦

𝛽𝑟
=

𝑑𝑧

𝜑𝑟 𝛽𝑟𝑥 − 𝛼𝑟𝑦 exp  −
𝛾𝑟

𝛼𝑟
𝑥 − 𝛾𝑟𝑧

 

From first two we get 

𝑑𝑥

𝛼𝑟
=

𝑑𝑦

𝛽𝑟
 

⇒ 𝛽𝑟𝑑𝑥 = 𝛼𝑟𝑑𝑦 

⇒ 𝛽𝑟𝑥 − 𝛼𝑟𝑑𝑦 = 𝑐𝑟  

From first and third we get 
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𝑑𝑥

𝛼𝑟
=

𝑑𝑧

𝜑𝑟 𝛽𝑟𝑥 − 𝛼𝑟𝑦 exp  −
𝛾𝑟

𝛼𝑟
𝑥 − 𝛾𝑟𝑧

 

⇒
𝑑𝑧

𝑑𝑥
=

𝜑𝑟 𝛽𝑟𝑥 − 𝛼𝑟𝑦 exp  −
𝛾𝑟

𝛼𝑟
𝑥 − 𝛾𝑟𝑧

𝛼𝑟
 

⇒
𝑑𝑧

𝑑𝑥
+

𝛾𝑟𝑧

𝛼𝑟
=

𝜑𝑟 𝛽𝑟𝑥 − 𝛼𝑟𝑦 exp  −
𝛾𝑟

𝛼𝑟
𝑥 

𝛼𝑟
 

Here I. F. is 𝑒
𝛾𝑟𝑥

𝛼𝑟     therefore the above equation can be written as 

𝑑  𝑧𝑒
𝛾𝑟𝑥
𝛼𝑟  =

𝜑𝑟 𝛽𝑟𝑥 − 𝛼𝑟𝑦 

𝛼𝑟
 

⇒ 𝑧𝑒
𝛾𝑟𝑥
𝛼𝑟 =

1

𝛼𝑟
 𝜑𝑟 𝛽𝑟𝑥 − 𝛼𝑟𝑦 𝑑𝑥 + 𝛽𝑟  

⇒ 𝑧𝑒
𝛾𝑟𝑥
𝛼𝑟 = 𝑒

−
𝛾𝑟𝑥
𝛼𝑟  𝜑𝑟 𝛽𝑟𝑥 − 𝛼𝑟𝑦 + 𝜓𝑟 𝛽𝑟𝑥 − 𝛼𝑟𝑦   

Example: If 𝑧 = 𝑒𝑎𝑥 +𝑏𝑦  

Then   𝐹 𝐷, 𝐷′ 𝑧 = 𝐹 𝑎, 𝑏 𝑒𝑎𝑥 +𝑏𝑦  

𝑧  acts as the solution of 𝐹 𝐷, 𝐷′ 𝑧, where 𝐹 𝐷, 𝐷′ 𝑧 is reducible if 𝐹 𝑎, 𝑏 = 0. 

Exercise:
𝜕3𝑧

𝜕𝑥3 − 2
𝜕3𝑧

𝜕𝑥2𝜕𝑦
−

𝜕3𝑧

𝜕𝑥𝜕 𝑦2 + 2
𝜕3𝑧

𝜕𝑦3 = 𝑒𝑥+𝑦  

Sol: The given differential equations can be written as  

 𝐷3 − 2𝐷2𝐷′ − 𝐷𝐷′2 + 2𝐷′3 𝑧 = 𝑒𝑥+𝑦  

Auxiliary equations 𝑚3 − 2𝑚2 − 𝑚 + 2 = 0 

⇒  𝑚 − 1  𝑚2 − 𝑚 − 2 = 0 

⇒ 𝑚 = 1, −1, 2 

Therefore the C. F. is 

𝑧 = 𝑓1 𝑦 + 𝑥 + 𝑓1 𝑦 − 𝑥 + 𝑓1 𝑦 + 2𝑥  

P. I.        =    
1

𝐷3−2𝐷2𝐷′ −𝐷𝐷′2+2𝐷′3
𝑒𝑥+𝑦  
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              =    
1

𝐷2 𝐷−2𝐷′ −𝐷′ 2
 𝐷−𝐷′ 

𝑒𝑥+𝑦  

              =    
1

 𝐷2−𝐷′ 2
  𝐷−2𝐷′ 

𝑒𝑥+𝑦  

              =    
1

 𝐷−𝐷′   𝐷+𝐷′  𝐷−2𝐷′ 
𝑒𝑥+𝑦  

              =    
1

 𝐷−𝐷′   1+1  1−2 
𝑒𝑥+𝑦  

              =    
1

−2 𝐷−𝐷′  
𝑒𝑥+𝑦  

Now let    𝑤 =
1

𝐷−𝐷′
𝑒𝑥+𝑦  

⇒  𝐷 − 𝐷′ 𝑤 = 𝑒𝑥+𝑦  

The auxiliary equations are  

𝑑𝑥

1
=

𝑑𝑦

−1
=

𝑑𝑤

𝑒𝑥+𝑦
 

From first two members we have 

𝑑𝑥

1
=

𝑑𝑦

−1
 

⇒ 𝑑𝑥 + 𝑑𝑦 = 0 

⇒ 𝑥 + 𝑦 = 𝑐 

From first and third member we get 

𝑑𝑥

1
=

𝑑𝑤

𝑒𝑥+𝑦
 

 ⇒ 𝑑𝑥 =
𝑑𝑤

𝑒𝑐
 

⇒ 𝑑𝑤 = 𝑒𝑐𝑑𝑥 

⇒ 𝑤 = 𝑒𝑐𝑥 

⇒ 𝑤 = 𝑥𝑒𝑥+𝑦  

Therefore the particular integral =  −
𝑤

2
= −

1

2
𝑥𝑒𝑥+𝑦  

Hence the complete solution is 𝑧 = 𝐶. 𝐹 + 𝑃. 𝐼 
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𝑧 = 𝑓1 𝑦 + 𝑥 + 𝑓1 𝑦 − 𝑥 + 𝑓1 𝑦 + 2𝑥 + −
1

2
𝑥𝑒𝑥+𝑦  

Laplace Equation 

∇2𝑧 =  
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
 𝑧 = 0 

Exercise: Find the solution of the equation  ∇2z = e−x cos y 

Which tends to 0 as 𝑥 → ∞  and  cos 𝑦   for  𝑥 = 0. 

Sol: The given pde is ∇2z = e−x cos y 

⇒
𝜕2𝑧

𝜕𝑥2
+

𝜕2𝑧

𝜕𝑦2
= e−x cos y 

⇒  𝐷2 + 𝐷′2 𝑧 = e−x cos y         .  .  ..          (1) 

On comparing with 𝐹 𝐷, 𝐷′ = 𝐷2 + 𝐷′2     and    𝑓 𝑥, 𝑦 = e−x cos y 

Let 𝑧 = 𝑒𝑎𝑥 +𝑏𝑦    be the solution of (1) 

∴  𝐷2 + 𝐷′2 𝑧 =    𝑎2𝑒𝑎𝑥 +𝑏𝑦 + 𝑏2𝑒𝑎𝑥 +𝑏𝑦  

                               =      𝑎2 + 𝑏2 𝑒𝑎𝑥+𝑏𝑦  

Where   𝑎2 + 𝑏2 = 0 = 𝐹 𝑎, 𝑏  

Therefore the complementary function is 𝐶. 𝐹. =  𝐴𝑟
∞
𝑟=0 𝑒𝑎𝑥 +𝑏𝑦  

𝐴𝑟 ′𝑠 being the constants and 𝑎𝑟
2 + 𝑏𝑟

2 = 0 

Also     P. I.     =       
1

𝐷2+𝐷′2 e−x cos y 

                        =      cos 𝑦
1

𝐷2−1
e−x  

                        =      𝑥 cos 𝑦
1

2𝐷
e−x 

                        =      −
𝑥

2
cos 𝑦 e−x  

Therefore the complete solution is  

𝑧 =  𝐴𝑟

∞

𝑟=0

𝑒𝑎𝑥 +𝑏𝑦 −
𝑥

2
cos 𝑦 e−x  
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Using 𝑧 → 0  as 𝑥 → ∞, we write 

𝑎𝑟 = −𝜆𝑟   where  𝜆𝑟 > 0 

Since 𝑎𝑟
2 + 𝑏𝑟

2 = 0 

⇒ 𝑏𝑟 =   ±𝑖 𝑎𝑟
2 

                         =   ±𝑖𝜆𝑟  

𝑧  =  𝐴𝑟

∞

𝑟=0

𝑒−𝜆𝑟𝑥𝑒±𝑖𝜆𝑟𝑥 −
𝑥

2
cos 𝑦 e−x  

      =  𝐵𝑟

∞

𝑟=0

𝑒−𝜆𝑟𝑥 cos 𝜆𝑟𝑦 + 𝜖𝑟 −
𝑥

2
cos 𝑦 e−x  

Using the boundary condition 

cos 𝑦 =  𝐵𝑟

∞

𝑟=0

cos 𝜆𝑟𝑦 + 𝜖𝑟  

  Where    𝐵𝑟 = 1 𝑎𝑛𝑑  𝜆𝑟 = 1    𝑓𝑜𝑟 𝑟 = 0    and    𝐵𝑟 = 0 𝑎𝑛𝑑  𝜆𝑟 = 0    𝑓𝑜𝑟 𝑟 ≠ 0 

Therefore  𝑧 = cos 𝑦 e−x −
𝑥

2
cos 𝑦 e−x    is the required solution.  

 Exercise: Show that the equation 
𝜕2𝑦

𝜕𝑡2 + 2𝑘
𝜕𝑦

𝜕𝑡
= 𝑐2 𝜕2𝑦

𝜕𝑥2 

Possesses solution of the form  𝐶𝑟 𝑒−𝑘𝑡 cos 𝛼𝑟𝑥 + 𝜖𝑟 cos 𝑤𝑟𝑡 + 𝛿𝑟  

Where 𝐶𝑟 , 𝛼𝑟 , 𝜖𝑟 , 𝜔𝑟 , 𝛿𝑟    are constants and 𝜔𝑟 = 𝛿𝑟
2𝑐2 − 𝑘2 

Sol:    Let    
𝜕𝑦

𝜕𝑡
= 𝐷;     

𝜕𝑦

𝜕𝑥
= 𝐷′;      

Therefore     𝐷2 + 2𝑘𝐷 𝑦 = 𝑐2𝐷′2𝑦 

or               𝐷2 + 2𝑘𝐷 − 𝑐2𝐷′2 𝑦 = 0          ... (1) 

It is irreducible, therefore let 𝑦 = 𝑒𝑎𝑡+𝑏𝑥  

⇒            𝐷𝑦 = 𝑎𝑒𝑎𝑡+𝑏𝑥     and       𝐷2𝑦 = 𝑎2𝑒𝑎𝑡+𝑏𝑥  

Similarly we get  

          𝐷′𝑦 = 𝑏𝑒𝑎𝑡 +𝑏𝑥     and       𝐷′2𝑦 = 𝑏2𝑒𝑎𝑡 +𝑏𝑥  
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Therefore form (1)  we have 

𝑎2𝑒𝑎𝑡+𝑏𝑥 + 2𝑘𝑎𝑒𝑎𝑡+𝑏𝑥 + 𝑐2𝑏2𝑒𝑎𝑡+𝑏𝑥 = 0 

⇒    𝑎2 + 2𝑘𝑎 + 𝑐2𝑏2 𝑒𝑎𝑡+𝑏𝑥 = 0 

⇒  𝑎2 + 2𝑘𝑎 + 𝑐2𝑏2 = 0 

⇒   𝑎 =
−2𝑘 ±  4𝑘2 + 4𝑏2𝑐2

2
 

⇒   𝑎 = −𝑘 ±  𝑘2 + 𝑏2𝑐2 

In general 𝑎𝑟 = −𝑘 ±  𝑘2 + 𝑏𝑟
2𝑐2 

 

If       𝑏𝑟
2 = −𝛼𝑟

2 

Then    𝑎𝑟 = −𝑘 ±  𝑘2 − 𝛼𝑟
2𝑐2 

                 = −𝑘 ± 𝑖𝜔𝑟  

Where 𝜔𝑟
2 = 𝛼𝑟

2𝑐2 − 𝑘2 

 

Therefore 𝑦 =    𝑒𝑏𝑟𝑥𝑒𝑎𝑟𝑡  

                      =   𝑒−𝑥𝑡𝑒−𝑖𝜔 𝑟𝑡𝑒−𝑖𝑎𝑟𝑥  

𝑦 =  𝑐𝑟𝑒
−𝑥𝑡 cos 𝛼𝑟𝑥 + 𝜖𝑟 cos 𝜔𝑟𝑡 + 𝛿𝑟 

∞

𝑟=0

 

Where 𝐶𝑟 , 𝛼𝑟 , 𝜖𝑟 , 𝜔𝑟 , 𝛿𝑟    are constants and 𝜔𝑟 = 𝛿𝑟
2𝑐2 − 𝑘2 

Exercise:1 If 𝑧 = 𝑓 𝑥2 − 𝑦 + 𝑔 𝑥2 + 𝑦 ,  where 𝑓  and 𝑔 are arbitrary constants, 

prove that  

𝜕2𝑧

𝜕𝑥2
−

1

𝑥

𝜕𝑧

𝜕𝑥
= 4𝑥2

𝜕2𝑧

𝜕𝑦2
 

Exercise:2 Find the solution of   

𝜕2𝑧

𝜕𝑥2
−

𝜕2𝑧

𝜕𝑦2
= 𝑥 − 𝑦 



Draft  PDE Lecture Notes       Khanday M.A. 

Department of Mathematics, University of Kashmir, Srinagar-190006                                      27 
 

Sol: The given equation is  

 𝐷2 − 𝐷′ 2
 𝑧 = 𝑥 − 𝑦 

The auxiliary equation is   𝑚2 − 1 = 0  so that   𝑚 = ±1 

        Therefore C. F. is  𝑓1 𝑦 + 𝑥 + 𝑓2 𝑦 − 𝑥  

   P. I. is    
1

𝐷2−𝐷′ 2  𝑥 − 𝑦  

=
1

𝐷2  1 −
𝐷′ 2

𝐷2  

 𝑥 − 𝑦  

=
1

𝐷2
 1 −  

𝐷

𝐷′
 

2

 

−1

 𝑥 − 𝑦  

=
1

𝐷2
 1 +  

𝐷

𝐷′
 

2

+  
𝐷

𝐷′
 

4

+   .  .  .     𝑥 − 𝑦  

=
1

𝐷2
  𝑥 − 𝑦 +  

𝐷

𝐷′
 

2

 𝑥 − 𝑦 +  
𝐷

𝐷′
 

4

 𝑥 − 𝑦 +   .  .  .     

=
1

𝐷2
  𝑥 − 𝑦 + 0 + 0   .  .  .     

=
1

𝐷
 
𝑥2

2
− 𝑦𝑥    

=
𝑥3

3
−

𝑦𝑥2

2
 

Therefore the complete solution is 𝑧 = 𝐶. 𝐹. +𝑃.  𝐼. =  𝑓1 𝑦 + 𝑥 + 𝑓2 𝑦 − 𝑥 +
𝑥3

3
−

𝑦𝑥2

2
 

Exercise:3 Find the solution of   

𝜕4𝑧

𝜕𝑥4
+

𝜕4𝑧

𝜕𝑦4
= 2

𝜕4𝑧

𝜕𝑥2𝜕𝑦2
 

Sol: Please try Yourself 

Exercise:4 Show that the equation 
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𝜕2𝑧

𝜕𝑥2
=

1

𝑘

𝜕𝑧

𝜕𝑡
 

Possesses solution of the form  

 𝑐𝑛 cos 𝑛𝑥 + 𝜖𝑛 𝑒−𝑘𝑛2𝑡

∞

𝑟=0

 

Sol: Please try Yourself 

Exercise:5 Find the P. I. of the following PDE’s 

(a)    𝐷2 − 𝐷′ 𝑧 = 2𝑦 − 𝑥2 

(b)    𝐷2 − 𝐷′ 𝑧 = 𝑒2𝑥−𝑦  

(c)   𝑟 + 𝑠 − 2𝑡 = 𝑒𝑥+𝑦  

(d)   𝑟 − 𝑠 + 2𝑞 − 𝑧 = 𝑥2𝑦2 

(e)   
𝜕2𝑧

𝜕𝑥2 +
𝜕2𝑧

𝜕𝑥𝜕𝑦
− 6

𝜕2𝑧

𝜕𝑦2 = 𝑦 cos 𝑥 

Sol:  (a) P. I.  is     
1

𝐷2−𝐷′
 2𝑦 − 𝑥2  

=
1

𝐷2  1 −
𝐷′
𝐷2 

 2𝑦 − 𝑥2  

=
1

𝐷2
 1 −

𝐷′

𝐷2
 

−1

 2𝑦 − 𝑥2  

=
1

𝐷2
 1 +

𝐷′

𝐷2
+

𝐷′2

𝐷4
+  .   .  .     2𝑦 − 𝑥2  

=
1

𝐷2
  2𝑦 − 𝑥2 +

𝐷′

𝐷2
 2𝑦 − 𝑥2 +

𝐷′2

𝐷4
 2𝑦 − 𝑥2 +  .   .  .     

=
1

𝐷2
  2𝑦 − 𝑥2 +

1

𝐷2
 2   

=
1

𝐷2
  2𝑦 − 𝑥2 +

1

𝐷
 2𝑥   

=
1

𝐷2
  2𝑦 − 𝑥2 + 𝑥2  
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=
1

𝐷2
 2𝑦   

=
1

𝐷
 2𝑥𝑦   

= 𝑥2𝑦 

Which is required particular intergral 

(b) Please try yourself. 

(c) Please try yourself. 

(d) P. I.  is          
1

𝐷2−𝐷𝐷′ +2𝐷′ −1
 𝑥2𝑦2  

=
1

𝐷2  1 −
𝐷′
𝐷 +

2𝐷′
𝐷2 −

1
𝐷2 

 𝑥2𝑦2  

=
1

𝐷2
 1 −  

𝐷′

𝐷
−

2𝐷′

𝐷2
+

1

𝐷2
  

−1

 𝑥2𝑦2  

=
1

𝐷2
 1 +  

𝐷′

𝐷
−

2𝐷′

𝐷2
+

1

𝐷2
 +  

𝐷′

𝐷
−

2𝐷′

𝐷2
+

1

𝐷2
 

2

+  .  .  .    𝑥2𝑦2  

 =    
1

𝐷2   𝑥2𝑦2 +
1

𝐷
 2𝑥2𝑦 −

2

𝐷2
 2𝑥2𝑦 +

1

𝐷2
 𝑥2𝑦2 +

𝐷′

𝐷2
 𝑥2𝑦2 +

              4
𝐷′2

𝐷4
 𝑥2𝑦2 +

1

𝐷4
 𝑥2𝑦2 − 4

𝐷′2

𝐷3
 𝑥2𝑦2 −

4

𝐷4
 𝑥2𝑦2 +

2𝐷′

𝐷3
 𝑥2𝑦2 +  .  .   .    

             =    
1

𝐷2   𝑥2𝑦2 +
2

3
 𝑥3𝑦 −

1

12
 𝑥4𝑦 +

1

6
 𝑥4 +

1

40
 𝑥6 −

2

15
 𝑥5 −

                                       
1

45
 𝑥6𝑦 +

1

15
 𝑥5𝑦   

           =  
𝑥8

2240
−

𝑥7

315
+

𝑥6

180
+

𝑥5𝑦

30
+

𝑥4𝑦2

12
−

𝑥6𝑦

120
−

𝑥8𝑦

2570
−

𝑥7𝑦

630
 

which is the required particular integral. 
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Chapter-3 

Classification of second order partial differential equation 

Definition: A second order partial differential equation which is linear w. r. t., the 

second order partial derivatives i.e.  𝑟, 𝑠 and 𝑡  is said to be a quasi linear PDE of 

second order. For example the equation 

 𝑅𝑟 + 𝑆𝑠 + 𝑇𝑡 + 𝑓 𝑥, 𝑦, 𝑧, 𝑝, 𝑞 =  0                                … . (1) 

where  𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) need not be linear, is a quasi linear partial differential equation. 

Here the coefficients R, S, T may be functions of x and y, however for the sake of 

simplicity we assume them to be constants. 

The equation (1) is said to be  

(i) Elliptic     if      S
2
 -4RT < 0 

(ii) Parabolic  if      S
2
 -4RT =0 

(iii) Hyperbolic if      S
2
 -4RT >0 

BOUNDARY VALUE PROBLEMS: The function v in addition to satisfying the 

Laplace and Poisson equations in bounded region R in three dimensional space, 

should also satisfy certain boundary conditions on the boundary C of this region. 

Such problems are referred to as Boundary value problems for Laplace and poison 

equations. If a function f ∈ Cn
, then all its derivatives of order n are continuous. If f ∈

 C0
,then we mean that f is continuous. 

   There are mainly three types of boundary value problems for Laplace equation. If f 

∈ C0,
 and is prescribed on the boundary C of some finite region    R,  the problem of 

determining a function ∅ (𝑥, 𝑦, 𝑧) such that∇2∅ = 0 within R and satisfying ∅ = f on 

C,is called the boundary value problem of first kind or Dirichlet problem. The second 

type of boundary value problem (BVP) is to determine the function ∅ (𝑥, 𝑦, 𝑧) so that 

∇2∅ = 0 within R while 
𝜕∅

𝜕𝑛
 is sepecified at every point of C, where 

𝜕∅

𝜕𝑛
is the normal 

derivative of ∅. This problem is called the Neumann problem. 

 The third type of boundary value problem is concerned with the determination of the 

function ∅ (𝑥, 𝑦, 𝑧) such that ∇2∅ = 0 within R,while a boundary condition of the 

form 
𝜕∅

𝜕𝑛
+ h ∅ = f,where h≥ 0 is specified at every point of the boundary C.This is 

called a mixed boundary value problem or Churchill’s problem. 

 

 



Draft  PDE Lecture Notes       Khanday M.A. 

Department of Mathematics, University of Kashmir, Srinagar-190006                                      31 
 

Separation of variables method: 

The method of separation of variables is applicable to a large number of classical 

linear homogenous Equations. The choice of the coordinate system in general 

depends on the shape of the body. Consider a two dimensional Laplace equation  

𝛻2∅  =  
𝜕2(𝑢)

𝜕𝑥2
+  

𝜕2(𝑢)

𝜕𝑦2
 =  0                                                 … (1) 

We assume that           𝑢(𝑥, 𝑦)  =  𝑋(𝑥) 𝑌(𝑦)                                            . . . (2) 

Equation (1) and (2) provide us  

𝑋ʹʹ

𝑋
 =  

𝑌ʹʹ

𝑌
 =  𝑘        (separation parameter) 

Three cases arise : 

Case I:  Let k>0.then k = p
2
, p is real we get 

𝑑2𝑋

𝑑𝑥2  −  𝑝2𝑋 =  0  and 
𝑑2𝑌

𝑑𝑦2  −  𝑝2𝑋 =  0 

which imply that X = C1 e
px

 + C2 e
-px

 

and Y = C3 cos py + C4 sin py  

then solution is  

u(x,y) = (C1 e
px

 + C2 e
-px 

) (C3 cos py + C4 sin py )                     ...(3) 

Case II: let k = 0 then 
𝑑2𝑋

𝑑𝑥2 =  0   and  
𝑑2𝑌

𝑑𝑦
  =  0 

Which provide us X = C5x + C6  and Y = C7y + C8 

The solution is therefore    u(x,y)  =  (C5x + C6 )( C7y + C8)            ...(4) 

CASE III: let k < 0 then k = -p
2
 proceeding as in case I, we obtain  

u(x,y) = (C9 cos px + C10 sin px) (C11 e
py

 + C12 e
-py

 )                      ...(5) 

In all these cases 𝐶𝑖  ( 𝑖 =  1, 2, 3,   .  .  . ,12) are integration constants,which are 

calculated by using the boundary conditions. For example, consider the boundary 

condition  

U(x,0) = 0, u(x, a) =0,  u(x, y) → 0, as x → ∞ 

Where x ≥ 0 and 0≤ y ≤ a. 
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The appropriate solution for u(x, y) by the methods of separation of variables 

obtained above in this case is  

             U(x, y) =  (C1 e
px

 + C2 e
-px 

) (C3 cos py + C4 sin py )              ...(6) 

Since         u(x,y) → 0, as x → ∞, we have  

C1 = 0  ∀  y  

 (x,y) =   C2 e
-px  

(C3 cos py + C4 sin py )     

As u(x,0) = 0, we get            

C2 e
-px  

C3 = 0  ⇒ C3 = 0  [ because C2≠ 0≠ e
-px , ∀ x ] 

U(x, y) = A e
-px 

sin py,  A = C2C4 

Now u(x, a) = 0  ⇒ A e
-px 

sin pa = 0  ⇒ sin pa = 0 [∵ A ≠  0 ] 

⇒ pa = n𝜋,n∈ I ⇒ p = n𝜋 / a, n = 0, ∓ 1,... 

u(x, y) =  𝐴n e
-n𝜋x/a

 sin 
𝑛𝜋𝑦

𝑎
 

An being new constant. 

This is the required solution in this case. 

Ex. Show that the two dimensional Laplace equation ∇1
2
 V = 0, in the plane polar 

coordinates r and 𝜃 has the solution of the form              (Ar
n
 + Br

n
) e (∓ in𝜃),        

where A and B are n constants. Determine V if it satisfies 
 

∇1
2
 V = 0 in the region 0≤ r ≤ a, 0≤ 𝜃 ≤ 2𝜋 and 

(i)  V remains finite as r → 0 

(ii) V =  𝐶𝑛 cos(𝑛𝜃)𝑛 , on r = a. 

Sol: Try yourself. 

Laplace equation in cylindrical coordinates: 

0
11

2

2

2

2

22

2
2






















z

VV

rr

V

rr

V
V


 

Let V = R(r)Θ(𝜃)Z(z) be the solution 
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r

R
Z

r

V









  and  

2

2

2

2

r

R
Z

r

V









 

2

2

2

2

 







RZ

V
,         

2

2

2

2

z

Z
R

z

V









 


2

2

2

2

22

2
2 11

z

Z
RRZ

rr

R
Z

rr

R
ZV



















 

 

Or    0
1111

2

2

2

2

22

2
















dz

Zd

Zd

d

rdr

dR

rdr

Rd

R 
 

Let      0,
1 2

2

2
2

2

2

 Z
dz

Zd
then

dz

Zd

Z
mm  

e
mz

Z


  

Now let enn
in

d

d

d

d 







 



0

1 2

2

2
2

2

2

 

Now     0
1

2

2

2

2

2

















r
n

mR
dr

dR

rdr

Rd
 

which is Bessel’s equation  

its solution can be written as  

R(r) =    mYBmJA rnnrnn
  

Therefore V(r,𝜃,z) =     eemYBmJA
imzim

rnnrnn





}{  

Home Assignments 

Exercise: Solve the PDE  

0
11

2

2

22

2




















rrrr
 

Subject to the condition 0





r
v


  at  r=a 
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And 



  sin1,cos U

r
vUvr 




  as r→ ∞ 

Exercise: Solve the BVP 

∇2u = 00 ≤ 𝑟 ≤ 10 

0 ≤ 𝜃 ≤ 𝜋 

Subject to the conditions  

𝑢 10, 𝜃 =
400

𝜋
 𝜋𝜃 − 𝜃2  

𝑢 𝑟, 0 = 0 = 𝑢 𝑟, 𝜋  

  And                                                𝑢 0, 𝜃  is finite  

Exercise: Show that the solution of the Cauchy problem for the Laplace equation 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑥2
= 0 

Subject to  the condition   𝑢 𝑥, 0 = 0 

𝑢𝑦 𝑥, 0 =
1

𝑛
sin 𝑛𝑥 

Where 𝑛 is a positive integer and 

𝑢 𝑥, 𝑦 =
1

𝑛2
sinh 𝑛𝑦 sin 𝑛𝑥 

Interior Dirichlet  problem for a circle 

The Dirichlet problem for a circle is defined as follows: 

     To find the value of u at any point in the interior of the circle r = a in terms of its 

values on the boundary such that u is the single valued and continuous function 

within and on the circular region and satisfies the equation ∇2
u = 0 ; 0≤ 𝑟 ≤ 𝑎 subject 

to u(a,𝜃) = f(𝜃) ; 0≤ 𝜃 ≤ 2𝜋 

We have 

∇2
u = 𝜕2

u / 𝜕r 
2
 + 1/r 

𝜕𝑢

𝜕𝑟
 + 1/r

2𝜕2
u / 𝜕𝜃 2 

= 0 

We know that  

 

u(r,𝜃) =  (𝐶∞
𝑛=0 nr

n
 + Dnr

-n 
) (An

ʹ 
cos n𝜃 + Bn

ʹ
 sin n𝜃 ) 
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Since the function u is defined for all the values within and on the boundary of a 

circle  

 

Therefore for r = 0 u(r,𝜃 ) exists only for Dn = 0 ∀ n  

 

Thus u(r,𝜃 )  =   𝑟∞
𝑛=0

n
 (Ancos n𝜃 + Bn sin n𝜃 ) 

 

            = a0 / 2 +  𝑟∞
𝑛=1

n
 (Ancos n𝜃 + Bn sin n𝜃 ) where A0 = a0 / 2  

 

            =  a0 / 2 +  𝑟∞
𝑛=1

n
 (ancos n𝜃 + bn sin n𝜃 )  

  

Put u(a,𝜃 )  = f(𝜃) 

 

 Therefore f(𝜃) = =  a0 / 2 +  𝑎∞
𝑛=1

n
 (ancos n𝜃 + bn sin n𝜃 )  

 

This is the full range Fourier series ( i.e. an, bn≠ 0 ) 

Now a0 =   1/𝜋  𝑓 𝜑 𝑑𝜑
2𝜋

0
 

 

     an = 1/𝜋𝑎𝑛  𝑓 𝜑 cos 𝑛𝜑 𝑑𝜑
2𝜋

0
 

 

    bn   = 1/𝜋𝑎𝑛  𝑓 𝜑 sin 𝑛𝜑 𝑑𝜑
2𝜋

0
 

 

u(r,𝜃 )=1/2𝜋  𝑓 𝜑 𝑑𝜑
2𝜋

0
 + 1/𝜋  (𝑟/𝑎)∞

𝑛=1
n
 cos 𝑛𝜃 cos 𝑛𝜑 + sin 𝑛𝜃 sin 𝑛𝜑

2𝜋

0
d𝜑 

 

u(r,𝜃 )=1/𝜋 {  𝑓 𝜑 
2𝜋

0
 [1/2 +  (𝑟/𝑎)∞

𝑛=1
n cos 𝑛𝜃 cos 𝑛𝜑 + sin 𝑛𝜃 sin 𝑛𝜑]d𝜑 }                          

 

u(r,𝜃 )=1/𝜋 {  𝑓 𝜑 
2𝜋

0
 [1/2 +  (𝑟/𝑎)∞

𝑛=1
n 𝑐𝑜𝑠 n(𝜑 − 𝜃)]d𝜑 }    ...(1) 

let c =    (𝑟/𝑎)∞
𝑛=1

n 𝑐𝑜𝑠 n(𝜑 − 𝜃) 

    S =     (𝑟/𝑎)∞
𝑛=1

n 𝑠𝑖𝑛 n(𝜑 − 𝜃) 

 

C + is =      {(𝑟/𝑎)∞
𝑛=1 𝑒𝑖(𝜑−𝜃)}

n
 

 

S   = r/a 𝑒𝑖(𝜑−𝜃) / 1- r/a 𝑒𝑖(𝜑−𝜃) ; r/a < 1 and | 𝑒𝑖(𝜑−𝜃)| ≤ 1 

 

 S   = r/a [cos(𝜑 − 𝜃) + 𝑖 sin⁡(𝜑 − 𝜃)] / 1- r/a ( cos(𝜑 − 𝜃) + 𝑖 sin⁡(𝜑 − 𝜃)] 

 

Equating real and imaginary parts  
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C = r/a [cos(𝜑 − 𝜃) ± 𝑟2

𝑎2 ] / 1-(2 r/a) ( cos 𝜑 − 𝜃 + 𝑟2

𝑎2 ] 

 

Using in (1) we get 

 

u(r,𝜃 )=
1

2𝜋
{  𝑓 𝜑 

2𝜋

0
 [1/2 + 

r

a
cos  φ−θ + 

𝑟2

𝑎2

1−2 
𝑟

𝑎
 cos  𝜑−𝜃 +

𝑟2

𝑎2

]} 

 

u(r,𝜃 )= 
1

2𝜋
{  

 𝑎2−𝑟2 

𝑎2−2𝑎𝑟𝑐𝑜𝑠 (𝜑−𝜃)
𝑓 𝜑 

2𝜋 

0
𝑑𝜑 

This is the Poisson’s integral formula for a circle. 

 

Exterior Dirichlet Problem for a circle: 

The exterior Dirchelet’s problem is described by 

0
2

  0 ≤ 𝜃 ≤ 2𝜋 

with      20:,  fa  at r=a 

where 𝑓 𝜃  is a continuous function of 𝜃 on the surface 𝑟 = 𝑎 and 𝜑 must be 

bounded as 𝑟 → ∞. 

The solution is of the form 

      nnr BArDrC nn
n

n

n

n

n
sincos,

0







  

As r→ ∞ ; ∅(𝑟, 𝜃) exists finitely 

 

   ,r   nn BAr nn
n

n
sincos

0







 

      = 
2

0a   nn bar nn
n

n
sincos

1







            ...(1) 

Now by the given condition 

  f(𝜃)= 
2

0a   nn baa nn
n

n
sincos

1







          ...(2)   

nCn
 0
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  




dfa 

2

0

0

1
 

     




dnfa
a

n

n
cos

2

0

  

     




dnfa
b

n

n
sin

2

0

  

Therefore we have from (1) 

        








dfnnnndfr
n

n

r

a
sinsincoscos

1

2

1
,

1

2

0

2

0


















  




 

         








dfn
r

a
dfr

n

n









  





cos
11

2

1
,

1

2

0

2

0

 

       





d
r

a
fr

n

n

}cos
2

1
{

1
,

1

2

0









 





         ...(3) 

Let C =   












n
r

a
n

n

cos
1

 

And S =   












n
r

a
n

n

sin
1

 

Therefore 𝐶 + 𝑖𝑆 = 

n

n

ie
r

a
























1

( )
 

               = 

e

e
i

i

r

a
r

a

)(

)(

1










 

Now by rationalising and comparing real parts on both sides we get 
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C = 

r
a

r
a

r

a

r

a

2

2

2

2

)cos(
2

1

)cos(









 

    











d

r

a

r

a

fr

r
a

r
a

}

)cos(
2

1

)cos(

2

1
{

1
,

2

2

2

2

2

0




           ...(4) 

      = 










2

0

22

22

)cos(2

)()

2

1 (

ar

ar
ar

df
 

INTERIOR NEUMANN PROBLEM FOR A CIRCLE 

The interior Neumann problem for a circle is defined as follows: 

To find the value of U at any point in the interior of the circle r=a such that 

;0
2

 u 0≤ 𝑟 < 𝑎;           0≤ 𝜃 ≤ 2𝜋 

And 
 

)(
,




g
r

ru

n

u










 on r=a 

By the method of separation of variable the general solution of the given equation is 

given by 

    nnru BArDrC nn

n

n
n

n

n
sincos),

0

( 






  

At r=0 the solution u should be finite and therefore Dn=o ∀ 𝑛 

Therefore      nnru bar nn
n

n
sincos,

0






 

    nnru bar
a

nn
n

n
sincos

2
,

1

0  




 

Therefore  




 




1

1 sincos
n

nn

n nnnr
r

u
ba   
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Now )(
),(




g
r

ru





  where  









2

0

1
cos)(

1
dng

nanna  









2

0

1
sin)(

1
dng

nannb  

Therefore  

  






1

2

0

1

0 sinsincoscos)(
2

),(
n

n

n

dnnnng
an

ru ra 




  

 

Home Assignment 

Exercise: By separating the variables, show that the equation   ∇2v = 0 has a solution 

of the form 𝐴 exp ±𝑛𝑥 ± 𝑖𝑛𝑦    where A and n are  constants 

Deduce that the function is of the form  

𝑣 𝑥, 𝑦 =  𝐴𝑟𝑒
−𝑟𝜋𝑥

𝑎 sin  
𝑟𝜋𝑦

𝑎
                        𝑥 ≥ 0;     0 ≤ 𝑦 ≤ 𝑎 

𝑟

 

Where 𝐴𝑟 ′𝑠 being constants are plane harmonic functions satisfying the conditions  

𝑣 𝑥, 0 = 0,      𝑣 𝑥, 𝑎 = 0,   𝑣 𝑥, 𝑦 → 0,   𝑎𝑠 𝑥 → ∞ 

Exercise: A thin rectangular homogeneous thermally conducting plane occupies the 

region 0 ≤ 𝑦 ≤ 𝑏,  0 ≤ 𝑥 ≤ 𝑎. The edge 𝑦 = 0  is held at temperature  𝑡 𝑥  𝑥 − 𝑎 ,  

where 𝑇 is a constants and other edges are maintained at ′0′. The other faces are 

insulated and there is no heat source or sink inside the plate. Find the steady state 

temperature inside the plate.  

Sol. Pleases try yourself. 

PARABOLIC DIFFERENTIAL EQUATIONS 

The have equation of the form 𝑅𝑟 + 𝑆𝑠 + 𝑇𝑡 + 𝑓 𝑥, 𝑦, 𝑧, 𝑝, 𝑞 = 0 with 𝑆2 − 4𝑅𝑇 =

0 is known as parabolic differential equation. The diffusion phenomenon such as 

conduction heat in solids and diffusion of viscous fluid flow as generated by a PDE of 

parabolic type. 
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    The general equation for heat transfer is governed by the following equations  

𝜕𝑇

𝜕𝑡
= 𝑘∇2T 

Where 
𝜕𝑇

𝜕𝑡
 is the time derivative and ∇2=

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2   represents the derivative 

w.r.t., space.  

Heat Equation: The heat conduction equation 
𝜕𝑇

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑥2
 

May have numerous solutions unless a set of initial and boundary conditions are 

satisfied. The boundary conditions are mainly of three types and are briefly given 

below. 

Boundary condition I: The temperature is prescribed all over the boundary surface. 

This type of boundary condition depends on the problem under investigation. Some 

times the temperature on the boundary surface is a function of position only or is a 

function of time only or a constant. A special case includes T(r, t ) = 0 on the surface 

of boundary, which is called a homogenous boundary condition. 

Boundary condition II: The flux of heat, i.e. the normal derivative of temperature 
𝜕𝑇

𝜕𝑛
 

is prescribed on the surface of boundary. This is called the Neumann condition. A 

special case includes 
𝜕𝑇

𝜕𝑛
 =0 on the boundary.This homogenous boundary condition is 

also called insulated boundary condition which states that the heat flow across the 

surface is zero. 

Boundary condition III: A linear combination of the temperature and the heat flux is 

prescribed on the boundary 

i.e. K 
𝜕𝑇

𝜕𝑛
 +ht = G(𝑥, t )  

this type of boundary condition is called Robins condition. It means that the boundary 

surface dissipates heat by convection. By Newton’s law of cooling, we have  

K
𝜕𝑇

𝜕𝑛
  = h(T – Ta ) 

Ta is the temperature of surrounding 

Its special case may be taken as  

𝐾
𝜕𝑇

𝜕𝑛
 +  𝑕𝑇 =  0 
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Which is homogenous boundary condition. 

The other boundary conditions such as the heat transfer due to radiation obeying the 

fourth power temperature law and these associated with change of phase like melting, 

ablation etc. give rise to non linear boundary conditions. 

SEPARATION OF VARIABLE METHOD: 

We consider the one dimensional heat conduction equation  

 
𝜕𝑇

 𝜕𝑡
 = 𝑘

𝜕2𝑇

𝜕𝑥2

              
              ...(1) 

let           𝑇(𝑥, 𝑡)  =  𝑋(𝑥) 𝑌(𝑡)                               ...(2) 

be the solution of the differential equation (1) substituting from (2) into (1) we obtain  

𝑋ʹʹ

𝑋
 =    

1

𝐾

𝑌ʹ

𝑌
 =  𝜆  (separation parameter) then we have  

 
𝑑2𝑋ʹʹ

𝑑𝑥2 − 𝜆X = 0                                         ...(3) 

                     
𝑑𝑌

𝑑𝑡
−   𝐾𝜆𝑌 =  0                                     ...(4) 

In Solving equations (3) and (4) three distinct cases arise. 

 

Case I: Let-𝜆>0, say 𝛼2 the solution will have the form 

 X = C1𝑒𝛼𝑥  + C2𝑒−𝛼𝑥 , Y = C3𝑒𝛼2𝑘𝑡       ...(5) 

Case II: let 𝜆 = - 𝛼2, 𝛼 is positive, then solution will have the form  

Which provide us X = C1 cos 𝛼x+ C2 sin 𝛼x,  and Y = C3𝑒−𝛼2𝑘𝑡       ...(6) 

CASE III: let 𝜆 =0 then we have  

 X = C1x + C2, Y = C3                                         ...(7) 

Thus various possible solutions of the one dimensional heat conduction equation (1) 

are  

𝑇(𝑥, 𝑡)  = (A𝑒𝛼𝑥 +B𝑒−𝛼𝑥 ) 𝑒𝑘𝛼2  t 

𝑇(𝑥, 𝑡)  =  (𝐴 cos 𝛼𝑥 + 𝐵 sin 𝛼𝑥 ) 𝑒 − 𝛼2  k t                                ...(8) 

𝑇(𝑥, 𝑡)  =  (𝐴𝑥 + 𝐵 )   where A = C1 C3,    B = -C2 C3  
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Example 2: Show that the solution of the equation  

𝜕𝑇

𝜕𝑡
 =

𝜕2𝑇

𝜕𝑥2
                                                            . . . (1)   

Satisfying the conditions  

(1) T → 0, as t → ∞ 

(2)  T = 0, for x = 0 and x = a for all t > 0 

(3) T = x, when t = 0 and 0 < 𝑥 <  𝑎 is  

 

𝑇(𝑥, 𝑡)  = 2a /𝜋  (−1)𝑛−1∞
𝑛=1 /n ) sin (

𝑛𝜋

𝑎
 x)  exp[-(n𝜋 /𝑎)2

 t] 

Solution: we know that the solution of (1) is  

[1]    𝑇(𝑥, 𝑡)  = (A𝑒𝛼𝑥  + B𝑒−𝛼𝑥  ) exp (𝛼2
t) 

[2]    𝑇(𝑥, 𝑡)  =  (𝐴 cos 𝛼𝑥  +  𝐵 sin 𝛼𝑥 ) 𝑒𝑥p (𝛼2
t) 

[3]    𝑇(𝑥, 𝑡)  =  𝐴𝑥 +  𝐵  

Clearly solutions represented by (1) and (2) does not satisfy the given conditions. 

Therefore the most feasible solution for the equation (1) can be treated (2) 

𝑇(𝑥, 𝑡)  =  (𝐴 cos 𝛼𝑥  +  𝐵 sin 𝛼𝑥 ) 𝑒−𝛼2𝑡using the boundary condition (2) we have  
 

0 = [A(1) + B(0) ] 𝑒−𝛼2𝑡  

Or 0 = A𝑒−𝛼2𝑡  

Or A = 0  

Also T(0,t) = 0 = (B sin 𝛼𝑎)𝑒−𝛼2𝑡  

Since  B ≠ 0 and 𝑒−𝛼2𝑡 ≠ 0 

⇒       sin 𝛼𝑎 = 0  

⇒𝛼𝑎 =n𝜋        or           𝛼 =n𝜋 /a 

Hence the solution is of the form 

T(x, t) = B sin  
𝑛𝜋

𝑎
𝑥 𝑒−𝛼2𝑡  

            = Bsin  
𝑛𝜋

𝑎
𝑥 exp −

𝑛2𝜋2

𝑎2
𝑡  
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Since the heat conduction equation is linear therefore the most general solution is 

obtained by applying the principle of superposition  

i.e. T(x, t) =    𝐵∞
𝑛=1 n sin  

𝑛𝜋

𝑎
𝑥  exp −

𝑛2𝜋2

𝑎2
𝑡  

now using condition (3) we get  

      T = x  for t = 0  

⇒ x = =    𝐵∞
𝑛=1 n sin  

𝑛𝜋

𝑎
𝑥  × 1                (∵ t = 0) 

Which is a half range Fourier sine series therefore Bn = 2/a  𝑥𝑠𝑖𝑛(
𝑛𝜋

𝑎

𝑎

0
x) dx 

Let 
𝑛𝜋

𝑎
𝑥 = z 

𝑛𝜋

𝑎
𝑑𝑥 =d z 

For x = 0, z= 0  

For x = a, z = n𝜋 

Therefore 𝐵𝑛  =  
2

𝑎
 

𝑎2

𝑛𝜋 2 𝑧𝑠𝑖𝑛𝑧𝑑𝑧
𝑛𝜋

0
 

              = 
2𝑎

𝜋

−1𝑛+1

𝑛
 

Therefore 𝑇(𝑥, 𝑡)  =  
2𝑎

𝜋
 

 −1 𝑛+1

𝑛
∞
𝑛=1 sin  

𝑛𝜋

𝑎
𝑥  exp −

𝑛2𝜋2

𝑎2 𝑡  

EX: The ends A and B of a rod,  10 𝑐𝑚 in length are kept at temperature 0
0
c and 100

0
 

c respectively until the steady state conditions prevails. Suddenly the temperature at 

the end A is increased to 20
0
 c and the end B is decreased to 60

0
 c. Find the 

temperature distribution in rod at time at t. 

Sol. The problem is described by  

𝜕𝑇

𝜕𝑡
=𝑘

𝜕2𝑇

𝜕𝑥2  ; 0<x<10 

Subject to the conditions  

𝑇 (0, 𝑡)  =  10 

𝑇(10, 𝑡)  =  100 

  For steady state    
𝑑2𝑇

𝑑𝑥2
  = 0 
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Which implies that Ts=  𝐴𝑥 + 𝐵 

Now for x = 0,   T= 0   implies that B = 0, Therefore Ts =  𝐴𝑥 

And for x = 0, T = 100
0
 C,    implies that A = 10 

Thus the initial steady temperature distribution in rod is 

Ts(x) = 10x 

Similarly when the temperature at the ends A and B are changed to 20
0
c and 60

0
C, 

the final steady temperature in rod is  

Ts(x) = 4x + 20 

Which will be attained after long time. At any instant of time the temperature  

𝑇 (𝑥, 𝑡)  in rod is given by  

𝑇(𝑥, 𝑡)  =  𝑇𝑡(𝑥, 𝑡)  + 𝑇𝑠(𝑥) 

Where𝑇𝑡(𝑥, 𝑡) is the transient temperature distribution which tends to zero as 

 𝑡 →  ∞.  Now 𝑇(𝑥, 𝑡)  satisfies the given partial differential equation. Hence its 

general solution is of the form 

𝑇(𝑥, 𝑡)  =  𝑇𝑡(𝑥, 𝑡)  + 𝑇𝑠(𝑥) 

𝑇(𝑥, 𝑡)   =  4𝑥 + 20 + 𝑒−𝐾𝜆2𝑡  (𝐵 cos 𝜆𝑥  + 𝐶 sin 𝜆𝑥) 

For x = 0, T = 20
0
C,   we obtain  

20 = 20 + B 𝑒−𝐾𝜆2𝑡⇒  B = 0,   t >0 

For x = 10,    T = 60
0
     we get  

60 = 60 +𝑒−𝐾𝜆2𝑡C  sin 10 𝜆 

⇒ sin 10 λ = 0      ⇒    λ = 
𝑛𝜋

10
,    n𝜖 I 

The principle of superposition yields  

𝑇(𝑥, 𝑡)  =  4𝑥 + 20 + 

































x
n

t
n

kC
n

n
10

sin
10

exp

2

1


 

using the initial condition 𝑇 =  10 𝑥,    when t= 0,    we obtain 
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10𝑥 =  4𝑥 + 20 + 












x
n

C
n

n
10

sin
1


 

Where Cn =   dxx
n

x 







 10

sin206
10

2 10

0


 

                 =   












 nn

n 200800

5

1
1  

 

Thus the required solution is  

𝑇(𝑥, 𝑡) =  4𝑥 + 20 − 
1

5


1n

  









 nn

n 200800
1 




























 x

n
t

n
k

10
sin

10
exp

2


 

 

Diffusion equation in cylindrical coordinates 

     Consider a three dimensional diffusion equation 

t

T




 = TK 2  

In cylindrical coordinates  (𝑟, 𝜃, 𝑧)  it become  

2

2

2

2

22

2 111

z

TT

rr

T

rrt

T

k 
























                  ...(1) 

 

We assume separation of variables in the form 

 𝑇(𝑟, 𝜃, 𝑧)  =  𝑅(𝑟)   𝜃 𝑍 𝑧 ∅ 𝑡  

Substituting this in (1), we get 



 2

2

111










 






kz

z

rR

R

rR

R
 

Where   –𝜆2
   is a separation parameter. 

Then      02   k                    ...(2) 

 


22

2

11














z

z

rR

R

rR

R
 (say) 

The equation in Z,  R and   becomes 

  
02  zz                                     ...(3) 

  22221











r
R

R

rR

R
  

Therefore 
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  02                                       ...(4) 

And 0
1

2

2
22








 
 R

r
R

r
R                       ...(5) 

Equations (2) and (4) have particular solutions of the form 

e
tk

2


  

   sincos DC  

ee
zz

BAz
 

  

 

Equation (5) is Bessel’s equation of order   and its general solution is 

 

R(r) = 



















rr YCJC ))(

22

2

22

1 (   

Where )()( randr YJ 
 are Bessel functions of order   of first and second kind 

respectively. Equation (5) is singular for r = 0, the physically meaningful solution 

must be twice continuously differentiable in 0≤ 𝑟 ≤ 𝑎. 

Hence equation (5) has only one bounded solution 

i.e.    R(r) =   




  rJ 

22  

Finally the general solution of equation (1) is given as 

T(r,𝜃, 𝑧, 𝑡) =       












rDCBAtK jee

zz
)sincosexp

222

(  


...(6) 

Assignment 

EX: Find the solution of the diffusion equation 

t

T




 = K T2  

Ex: A uniform rod of length l with thermally insulated surface is initially at 

temperature 0  At t=0, one end is suddenly cooled to C00  

And subsequently maintained at this temperature, the other end remains thermally 

insulated. Find the temperature distribution 𝜃(𝑥, 𝑡). 

EX: Find the solution of the 1-D diffusion equation satisfying the following 

conditions  

(i)       𝑇 is bounded as 𝑡 → ∞ 

(ii)       
𝜕𝑇

𝜕𝑥
 
𝑥=0

= 0,    ∀ 𝑡 



Draft  PDE Lecture Notes       Khanday M.A. 

Department of Mathematics, University of Kashmir, Srinagar-190006                                      47 
 

(iii)  𝑇 𝑥, 0 = 𝑥 𝑎 − 𝑥 ;            0 < 𝑥 < 0 

EX: Solve the boundary value problem  

 

𝜕𝑢

𝜕𝑡
= 𝛼2

𝜕2𝑢

𝜕𝑥2
,                            0 < 𝑥 < 𝑡 

Subject to the conditions  

(i)           
𝜕𝑢  0,𝑡 

𝜕𝑥
= 0 

(ii)        
𝜕𝑢  𝑙,0 

𝜕𝑥
= 0 

(iii)       𝑢 𝑥, 0 = 𝑥 

EX: Solve the following equation 

 

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
 

Subject to the conditions  

(i)           𝑢 𝑥, 0 = 3 sin 𝑛𝜋𝑥 

 (ii)       𝑢 0, 𝑡 = 0 = 𝑢 𝑙, 𝑡 ,                  0 < 𝑥 < 𝑙,    𝑡 > 0. 

 

EX: Find the solution of the equation 

 

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
 

Subject to the conditions  

(i)           𝑢 𝑥, 0 = 3 sin 𝑛𝜋𝑥 

 (ii)        𝑢 0, 𝑡 = 0 = 𝑢 𝑙, 𝑡 ,                  0 < 𝑥 < 𝑙,    𝑡 > 0. 

EX: Find the solution of the equation 

 

𝜕𝑣

𝜕𝑡
= 𝑘

𝜕2𝑣

𝜕𝑥2
 

Subject to the conditions  

(i)           𝑣 = 𝑣0 sin 𝑛𝑡    where 𝑥 = 0    ∀𝑡 

 (ii)        𝑣 = 0            𝑥 → ∞ 

 

 

HYPERBOLIC DIFFERENTIAL EQUATIONS: 

One of the most important and typical homogenous hyperbolic differential equation is 

the wave equation of the form 

uc
t

u 22

2

2





 

Where 𝐶 is the wave speed. 
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      The differential equation above is used in many branches of physics and 

engineering and is seen in many situations such as transverse vibrations in strings or 

membrane, longitudinal vibrations in a bar, propagation of sound waves, 

electromagnetic waves, sea waves, elastic waves in solid and surface waves in earth 

quakes. 

  The solution of wave equations are called wave functions. 

Remark: The Maxwell’s equations of electromagnetic theory is given by 

PE 4.   

t

H

C
E

H













1

0.

 

t

t

CC

i
H







 14

 

Where E is an electric field,  is electric charge density, H is the magnetic field, C is 

the current density and C is the velocity of light. 

Exercise : show that in the absence of a charge, the electric field and the magnetic 

field in the Maxwell’s equation satisfy the wave equation. 

Solution: we have  

Curl E


 = 
t

H

C
E







 1

 

Consider   


















t

H

C
E


1

 

                  =  H
tC






1
 

This implies  
2

2

2

1

t

E

C
E




  

But  E  Can be expressed as  

    EEE 22 4    

       = - E2  

  

2

2

2

2 1

t

E

C
E




  
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Or EC
t

E 22

2

2





 

Which is a wave equation satisfied by E


 

 

Similarly we can observe the magnetic field H satisfies the wave equation  

Hc
t

H 22

2

2





. 

 

Solution of Wave equation: (Method of separation of variables)

 

We have   
2

2
2

2

2

x

u
c

t

u









          ...(1) 

Let U(x, t) =  X(x) T(x) be the solution of (1) 

TX
t

U







2

2

              and       XT
x

U





2

2

 

Using in (1),we get 

XTCTX  2 






X

X
C

T

T 2  (say) 

Where  is a separation parameter 

0 TT                                                                                   ...(2) 

And 02  XXC             ...(3) 

T = 
tt BeAe    

CASE I: If 0   say k
2

  

Therefore   ktkt BeAeT                                                                      ...(4) 

Similarly 

022  XKXC  

ee
X

C

K
X

C

K

EDxX


)(  
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 ),( txU   ( ee
KtKt

BA


 ) ( ee
X

C

K
X

C

K

ED


 ) 

This is the required solution 

Case II: if 0  

Then 0T   and  XC 2 =0 

DCtT     and  BAxX   

  Therefore   𝑈(𝑥, 𝑡) =   ( BAx )( DCt  ) 

Case III:  If 0     say 2K  

2K
T

T



  and  

2
2

K
X

XC



 

02  TKT   and   022  XKXC  

So T =  KtBKtA sincos    and         X = 







 x

C

K
Ex

C

K
D sincos  

Therefore  U(x, t) =  KtBKtA sincos  







 x

C

K
Ex

C

K
D sincos    

REMARK: From the above solutions of the wave equation for 0 ≤ 𝑥 ≤ 𝑙 and  𝑡 > 0 

Subject to the conditions 

𝑈(0, 𝑡)  = 0 ;  𝑡 > 0,      

𝑈(𝑙, 𝑡)  = 0 

Using the conditions in case I 

0    = U (0,t)    =    tKtK BeAe   ED   

 D+E = 0    ...(5) 

Now    U(l, t) =0  

 U(l, t) =  tKtK BeAe 















l
C

K
l

C

K

EeDe  = 0 
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















l
C

K
l

C

K

EeDe =0 

0
2

 EDe
l

C

K

   ...(6) 

1
2

 e
l

C

K

   By comparing coefficients in (5) and (6) 

02  l
C

K
0 l

C

K
 

Either 0l   or 0
C

K
 

Therefore solution in case (1) is not acceptable 

Now using in case II we get 

0=U (0, t) =(C t+ D)B 

0 B  

And 0 =  𝑈(𝑙, 𝑡)  =    DCtBAl   

   DCtBAl   =0 

Implies A =0   

Implies A=0=B 

Now using the conditions in case III 

U(x, t) =  KtBKtA sincos  







 x

C

K
Ex

C

K
D sincos  

Now U (0,t) =0 

  0)(sincos  DKtBKtA  

⇒    D =0 

Also 0 =  𝑈 (𝑙, 𝑡) =  KtBKtA sincos  







l

C

K
E sin  
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⇒ 0sin 







l

C

K
E

 

⇒ nl
C

K










 

⇒
l

n

C

K 


 

 ),( txU  KtBKtA sincos  







x

l

n
E


sin

 

Therefore by using superposition principle 


































 t

l

cn
t

l

cn
x

l

n
tx BAEU nnnn


sincossin),(

 

Ex:  By the separation of variables, show that one dimensional wave equation  

2

2

22

2 1

t

Z

cx

Z










 

Has solution of the form  inctincA exp  
Where A and n are constants. Hence show that the function of the form 

Z(x, t) = 

































a

xr

a

ctr

a

ctr

r
rr BA


sinsincos  

Where A sr
and  B sr

are constants, satisfying the wave equation and the boundary 

conditions 

𝑍(0, 𝑡)  =  0 =  𝑍(𝑎, 𝑡) ;  𝑡 > 0  
Ex: Obtain the solution of the radio equation 

2

2

2

2

t

V
LC

x

V










 

Appropriate to the case when the periodic e.m.f.    ptV cos0  is applied at the end x=0 

of the line. 

Exercise:  A tightly stretched string with fixed end points 𝑥 = 0  and 𝑥 =  𝑙  is 

initially in a position given  











l

x
yy

3

0 sin  

It is released from rest from this position. 

Find the displacement ),( txy  
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Sol. We have the wave equation  

2

2

22

2 1

t

y

Cx

y










 

Such that     ),(0),0( tlyty 

 
And 










l

x
yxy

3

0 sin)0,(

 

And at t=0 

0
dt

dy

 
Let y(x, t) = X(x) T(t) be the solution 

Then  

XT
t

X
T

x

y










2

2

2

2

 

TX
t

T
X

x

y
and 









2

2

2

2

 

We have  

 

TX
C

XT 
2

1
 

Therefore 

 

  ctDctCxBxAtxy  sincossincos),( 

 
Now,  

0),0( ty

 
  0sincos  ctDctCA 

 
0 A  

and    ctDctCxBtxy  sincossin),( 

 

And 

0
)0,(






t

xy

 


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0

0
















tt

y

 

   0]sincossincos[  tctcCctcDxBxA 
 

   0sincos  cDxBxA 
 

0D

 

Thus  

ctxEtxy  cossin),( 

 
Where 𝐸 = 𝐵𝑐 

0cossin  ctlE 

 
0sin  l

 
 nl 

 

l

n
 

 

















  ct

l

n
x

l

n
txy

n
nE


cossin),(

 

By the given condition 









 x

l
yxy

3

0 sin)0,(

 

Therefore  

 

















n

n x
l

n
Ex

l
y


sinsin 3

0

 

...
3

sin
2

sinsin 321 

























 x

l
Ex

l
Ex

l
E



 

We know that  

4

3sinsin3
sin3 xx

x




 

Or  
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...
3

sin
2

sinsin
4

3
sinsin3

3210 






























































l

x
E

l

x
E

l

x
E

l

x

l

x

y




 

Now comparing the coefficients on both sides we get 

0...,
4

,0,
4

3
54

0
32

0
1 


 EE

y
EE

y
E

 

ct
ll

xy
ct

ll

xy
txy 




































cos

3
sin

4
cossin

4

3
),( 00

 

This is the required solution. 

PERIODIC SOLUTION IN CYLINDERICAL COORDINATES: 

In cylindrical coordinates with u depending only on r. The one dimensional wave 

equation assume the form. 

 

 
2

2

2

11

t

u

Cr

u
r

rr 




















                     ...(1) 

Assume that 

e
iwt

rFU )(

 

Acts as a solution   

e
iwt

rF
r

U
)(





 

e
iwt

rFr
r

U
r )(




 

ee
iwtiwt

rFrrF
r

u
r

r
)()( 

















 

e
iwt

rFw
t

u
)(2

2

2






 

Now substituting in (1)we get 
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   ewee
iwtiwtiwt

rF
C

rFrrF
r

)(
1

)()(
1 2

2


 

0)(
)(

)(
2

2




 cF
c

w

r

rF
rF

 

Which is a form of Bessel’s equation and hence we have 




















c

wr
B

c

wr
AF yJ oO

 

In complete form we can write this equation as  




















































c

wr
i

c

wr

c

wr
i

c

wr
F yJCyJC oooO 21

 

Therefore the complete solution for the periodic function is  

eyJ
iwt

oO c

wr
B

c

wr
AU



























 

 

Cauchy problem for inhomogeneous wave equation: 

 

The wave equation  

),(
2

2
2

2

2

txf
x

u
C

t

u










 

Subject to the initial conditions 

)(
)0,(

),()0,( x
t

xu
xxu  




                                ...(1) 

and    ),(
2

2
2

2

2

txf
x

u
C

t

u










                                   ...(2) 

Subject to the homogenous initial conditions 

0)0,(2 xu         and   0
)0,(2 





t

xu
                                     ...(3) 

Integrating equation (2) over the region we get 
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 

















RR

dxdttxfdxdt
x

u
C

t

u
),(

2

2
2

2

2

 

Using Greens theorem in plane we get 

 














































RR

dxdttxfdxdt
ttxx

uu
C ),(222

 
























RR

dxdttxfdx
x

dt
t

u
c

u
),(222                       .  .  .    (4) 

Where 2R denotes the boundary of the region R. The boundary R  comprises of 

three segments PB, PA and AB 

Along PB,                   c
dt

dx
  

And along PA,         c
dt

dx
  

Using these, we have from equation (4) 

 



































RPABP

dxdttxfdx
x

u
dt

t

u
Cdx

x

u
dt

t

u
C ),(2222

 

We know that for any function Z=Z(x, y) 

dy
y

z
dx

x

z
dz









  

 
RPABP

dxdttxfCduCdu ),(22  

        
R

dxdttxfPCuACuBCuPCu ),(2222

 
Using conditions given in (3), we have  

    022  BuAu

 

Therefore we have  

  
R

dxdttxfPCu ),(2 2

 

   






t t

t

dxdttxf
C

Pu

ctcx

ctcx

0 0

0
0

2 ),(
2

1
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Where P(x0,t0) is any arbitrary point. From the initial conditions associated with the 

homogenous system, we know that 

        






ctx

ctx

d
c

ctxctxtxu 
1

2

1
,

1

 

Hence the complete solution of the inhomogeneous wave equation in one dimensional 

system is given by  

21),( uutxu 

 

Two Dimensional wave equation 

 

 
2

2

22

2

2

2 1

t

u

Cy

u

x

u















                       ...(1) 

 Let       

     tTyYxXtyxu ),,(

 

Be the solution of the of the above 2-D wave equation 

Now  

,
2

2

XYT
x

u





,

2

2

YXT
y

u





TXY

t

u





2

2

 

Using in (1) we get 

TXY
C

YXTXYT 
2

1

 

Dividing throughout by 𝑋𝑌𝑇 we get 

 

T

T

CY

Y

X

X 






2

1

 

This will be true when each member will be a constant 

Choosing the constant suitably we get 

02

2

2

 Xk
dx

Xd

 

And   
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02

2

2

 XL
dy

Yd

 

So that 

  0222

2

2

 TCLK
dt

Td

 

The solutions of these equations are 

KxKxX CC sincos
21



 

LyLyY CC sincos
43



 

And  

ctctT LKCLKC 





 






 

22

6

22

5
sincos

 

Hence the solution of two dimensional wave equation is 

  















 






 



ctct

LyLykxkxtyxu

LKCLKC

CCCC
22

6

22

5

4321

sincos

sincossincos,,(

 

DAlembert’s solution of one dimensional wave equation: 

 

Consider the IVP of Cauchy type described as  

 

  
;

2

2
2

2

2

x

u

t

u
c









 x ,      𝑡 > 0                        ...(1) 

Subject to the initial conditions 

   U(x,0) = )(x ,             
t

xu



 )0,(
=v(x)                                            ...(2) 

Where the curves on which the initial data )(x  and v(x) are prescribed on the   

𝑥 − 𝑎𝑥𝑖𝑠. The functions )(x  and v(x) are assumed to be twice continuously 

differentiable. 

 We know that the general solution of the wave equation is of the form  

    u(x, t) =   )( ctxgctxf                                       ...(3) 

Where f and g are arbitrary functions 

Using the given conditions 

 𝑈(𝑥, 0) = )()()( xgxfx                                   ...(4) 
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Also, 

t

xu



 )0,(
=v(x) =  )()( xgxfC   

i.e.   )()( xgxfC   = v(x)                                          ...(5) 

integrating (5),we get 

 


x

dssv
c

xgxf
0

)(
1

)()(                                          ...(6) 

Now adding (4)and (6),we have 



x

dssv
c

x
xf

0

)(
2

1

2

)(
)(


 

Also subtracting (6) from (4), we have 



x

dssv
c

x
xg

0

)(
2

1

2

)(
)(


 

Substituting in (3) we get 

𝑈(𝑥, 𝑡) =
   




































 ctxctx

dssv
c

ctx
dssv

c

ctx
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)(
2

1

2
)(

2

1

2


 

  𝑈(𝑥, 𝑡)    =      
   









ctx

ctx

dssv
c

ctxctx
)(

2

1

2


 

This is known as DAlembert’s solution of one dimensional wave equation. 

Note:  If v=0 i.e. the string is released from rest, the solution takes the form 

𝑈(𝑥, 𝑡)  =      
   

2

ctxctx  
 

DUHAMELS PRINCIPLE FOR WAVE EQUATION 

STATEMENT: Let R
3 

be the three dimensional Euclidean space and  321 ,, xxxx   

be any point in R
3
. If  ,,txvv  satisfies for fixed λ the partial differential equation 
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022

2

2





vC

t

v
                              ...(*)     

with the conditions 

  0,0, xv
 

  ),(,0, AxFx
t

v





                            ... (1) 

Where ),( AxF  denotes a continuous function defined for x in R
3
 

   dtxvtxifu

t

 
0

,,),(

 

Be any continuous function, then it satisfies 

),(22

2

2

xFvC
t

v





                 ... (2)

 
,3Rx 0t

 

 
t

xu
xu






0,
0)0,(

 

Proof: We are given that V satisfies the wave equation  

022

2

2





vC

t

v

 

With the conditions given in (1) 

Also for  

   dtxvtxu

t

 
0

,,),(

     ...(3) 

To be the solution of (2) where v(x, t-λ, λ) is one parameter family solution of (*)  

Also  v(x,0,λ)=0   for  t=λ 

Differentiating eq. (3) w. r. t.,  𝑡 under the integral sign and using Leibnitz rule we 

have  

 

   dtx
t

v
xv

t

u
t

,,),0,(
0












     ...(4) 

Differentiating (4) again w. r. t.,  𝑡 we have  
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   using (*) 

Finally we have from eq. (3)  

 

  ux
t

u
Cvt 

 



22

2

2

,0, 
 

 ,0,
22

2

2

xu
t

u
vC t




 


 

),0,(
22

2

2

xFu
t

u
C 


 


 

 

Clearly 𝑢(𝑥, 0)  =  0   and 

 
0

0,






t

xu

  

The function 𝑣(𝑥, 𝑡, 𝜆) is called the pulse function or the force function. 

Exercise: A rectangular membrane with fastened edge makes transverse vibrations. 

Explain how a formal series solution can be obtained. 

Sol: The given equation in 2-D is given by                                                                            

𝜕2𝑢

𝜕𝑡2
= 𝑐2  

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
 0 ≤ 𝑥 ≤ 𝑎 

            0 ≤ 𝑦 ≤ 𝑏                     ...(1) 

Subject to the boundary conditions  

𝑢 0, 𝑦, 𝑡 = 𝑢 𝑥, 0, 𝑡 = 𝑢 𝑥, 𝑏, 𝑡 = 𝑢 𝑎, 𝑦, 𝑡 = 0 

And initial conditions  

𝑢 𝑥, 𝑦, 0 = 𝑓 𝑥, 𝑦  

𝜕𝑢 𝑥, 𝑦, 0 

𝜕𝑡
= 𝑔 𝑥, 𝑦  

Let 𝑢 𝑥, 𝑦, 𝑡 = 𝑋 𝑥 𝑌 𝑦 𝑇 𝑡    be the solution of (1) 

 

t

vu
0

22
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Then  
𝜕2𝑢

𝜕𝑥2
= 𝑋′′ 𝑌𝑇,

𝜕2𝑢

𝜕𝑦2
= 𝑋𝑌′′ 𝑇,

𝜕2𝑢

𝜕𝑧2
= 𝑋𝑌𝑇′′ 

Substituting theses in (1) we get 

1

𝑐2

𝑇′′

𝑇
=

𝑋′′

𝑋
+

𝑌′′

𝑌
= −𝜆2   (say) 

Then     𝑇 ′′ + 𝜆2𝑐2𝑇 = 0 

 ⇒ 𝑇 𝑡 = 𝐸 cos 𝜆𝑐𝑡 + 𝐹 sin 𝜆𝑐𝑡                ... (2) 

   and    
𝑋′′

𝑋
+

𝑌′′

𝑌
= −𝜆2 

⇒
𝑋′′

𝑋
+ 𝜆2 = −

𝑌′′

𝑌
= 𝜇2 (𝑠𝑎𝑦) 

Then           
𝑋′′

𝑋
+ 𝜆2 = 𝜇2        and               

𝑌′′

𝑌
= −𝜇2 

⇒ 𝑋′′ +  𝜆2 − 𝜇2 𝑋 = 0        and               𝑌′′ + 𝜇2𝑌 = 0 

 ⇒   𝑋 = 𝐴 cos  𝜆2 − 𝜇2 𝑥 +  𝐵 sin  𝜆2 − 𝜇2𝑥             ...(3) 

and      𝑌 = 𝐶 cos 𝜇𝑦 + 𝐷 sin 𝜇𝑦                                           ...(4) 

put   𝜆 = 𝑟,         𝜆2 − 𝜇2 = 𝑝,        𝜇 = 𝑞  in (2),   (3)   and  (4)  we get   

𝑋 𝑥 = 𝐴 cos 𝑝𝑥 + 𝐵 sin 𝑝𝑥 

𝑌 𝑦 = 𝐶 cos 𝑞𝑦 + 𝐷 sin 𝑞𝑦 

𝑇 𝑡 = 𝐸 cos 𝑟𝑡 + 𝐹 sin 𝑟𝑡 

Thus the solution is given by 

𝑢 𝑥, 𝑦, 𝑡 =  𝐴 cos 𝑝𝑥 + 𝐵 sin 𝑝𝑥  𝐶 cos 𝑞𝑦 + 𝐷 sin 𝑞𝑦  𝐸 cos 𝑟𝑡 + 𝐹 sin 𝑟𝑡  

Now using the boundary conditions   𝑢 0, 𝑦, 𝑡 = 0,   we get  𝐴 = 0. 

Also 𝑢 𝑥, 0, 𝑡 = 0,    ⇒ 𝐶 = 0 

And   𝑢 𝑎, 𝑦, 𝑡 = 0 ⇒ sin 𝑝𝑎 = 0 

⇒ 𝑝𝑎 = 𝑚𝜋 ⇒ 𝑝 =
𝑚𝜋

𝑎
 

Also   𝑢 𝑥, 𝑏, 𝑡 = 0 ⇒ sin 𝑞𝑏 = 0 
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⇒ 𝑞𝑏 = 𝑛𝜋 ⇒  𝑞 =
𝑛𝜋

𝑏
 

Now using the principle of superposition we get, 

𝑢 𝑥, 𝑦, 𝑡 =    𝐴𝑚𝑛 cos 𝑟𝑐𝑡 + 𝐵𝑚𝑛 sin 𝑟𝑐𝑡   sin
𝑚𝜋

𝑎
𝑥  sin

𝑛𝜋

𝑏
𝑦 ∞

𝑛=1
∞
𝑚=1       .  .  .      

(A) 

where    𝑟2 = 𝑝2 + 𝑞2 = 𝜋2  
𝑚2

𝑎2 +
𝑛2

𝑏2  

The initial condition [using in (A) ] 

𝑢 𝑥, 𝑦, 0 = 𝑓 𝑥, 𝑦  

which implies   

𝑓 𝑥, 𝑦 =   𝐵𝑚𝑛  sin
𝑚𝜋

𝑎
𝑥  sin

𝑛𝜋

𝑏
𝑦 ∞

𝑛=1
∞
𝑚=1                   ... (B) 

And also     
𝜕𝑢  𝑥,𝑦 ,0 

𝜕𝑡
= 𝑔 𝑥, 𝑦  

𝑔 𝑥, 𝑦 = 𝑐𝑟   𝐵𝑚𝑛  sin
𝑚𝜋

𝑎
𝑥  sin

𝑛𝜋

𝑏
𝑦 ∞

𝑛=1
∞
𝑚=1                ...(C) 

where  

𝐵𝑚𝑛 =
4

𝑎𝑏𝑐𝑟
  𝑔 𝑥, 𝑦 

𝑏

0

𝑎

0

sin  
𝑚𝜋

𝑎
𝑥 sin  

𝑛𝜋

𝑏
𝑦 𝑑𝑥𝑑𝑦 

Hence (A),   (B) and  (C)   give the required solution. 

Exercise: Solve the IVP described by  
𝜕2𝑢

𝜕𝑡2 − 𝑐2 𝜕2𝑢

𝜕𝑦2 = 𝑒𝑥 ,     given that 𝑢 𝑥, 0 =

5,
𝜕𝑢  𝑥,0 

𝜕𝑡
= 𝑥2 

Sol: Please try self. 

 


