
         The main objective of this unit is to discuss the concept of an 

infinite series their convergence , conditional, absolute and the process 

of their rearrangements. We will be discussing certain tests for 

convergence of sequence and series namely Abel’s Test, Drichlet’s Test 

and some important theorem like Carleman’s theorem, Dirchlet’s 

theorem and many others. In the end of this unit we will consider the 

sequence and series of functions and we prove their convergence and 

uniform convergence by important tests. 

Definition Infinite series 1.1. We are already familiar with 

arithmetic and geometric series. In an arithmetic series, each term 

after the first term is formed by adding a fixed number to the 

proceeding term and in a geometric series, each term after the first is 

formed by multiplying the proceedings term by a fixed number. A 

series can be made by other ways also. For example, the series 

1+4+9+16+25+36 is formed by the squares of the first six natural 

numbers.  A series is the sum of the terms of sequence.  

Thus if 𝑢1, 𝑢2……is a sequence, then the sum 𝑢1+ 𝑢2…..of all terms is 

called an infinite series and is denoted by ∑ 𝑢𝑛
∞
𝑖=1   or simply by ∑ 𝑢𝑛. 

If we denoted 𝑆𝑛  by   𝑢1+ 𝑢2 +…………..𝑢𝑛 .  

That is , 

                          𝑆𝑛   =     𝑢1 + 𝑢2 + ⋯ … … . 𝑢𝑛       

Then the sequence < 𝑆𝑛 >  is called a sequence of partial sums of series 

and the partial sums, 

                            𝑆1= 𝑢1 ,  𝑆2= 𝑢1+ 𝑢2 ,………. .   𝑆𝑛       

                           𝑎𝑛𝑑      𝑆𝑛   =     𝑢1 + 𝑢2 + ⋯ … … . 𝑢𝑛       
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  and so on may be required  as approximation to infinite series ∑ 𝑢𝑛 .  

The series  n
u  is convergent if the sequence of partial sums are           

convergent, 

That is   if  𝑙𝑖𝑚
𝑛→∞

𝑆𝑛  exits, 

 Then,  n
u   is convergent and we write    𝑙𝑖𝑚

𝑛→∞
𝑆𝑛 = ∑ 𝑢𝑛.  

Carleman’s  Theorem 1.1 . 

  Suppose   ∑ 𝑎𝑛  be convergent series of positive terms , then 

           ∑ (𝑎1𝑎2 … . . 𝑎𝑛)
1

𝑛∞
𝑛=1    is convergent and ∑ 𝑢𝑛. ≤ 𝑒 ∑ 𝑎𝑛. 

     where     𝑢𝑛=   (𝑎1𝑎2 … … … . . 𝑎𝑛)
1

𝑛  . 

Proof:  We define 𝑐𝑛  by 

                       𝑐1𝑐2 … … 𝑐𝑛 =   (𝑛 + 1)𝑛                                             (1) 

                       𝑐1𝑐2 … … . 𝑐𝑛−1 =   (𝑛)𝑛−1                                 (2) 

  Dividing (i) and (ii), we get 

                      𝑐𝑛 =   
(𝑛+1)𝑛

(𝑛)𝑛−1
 

This implies that    
𝑐𝑛

𝑛
 =   (

𝑛+1

𝑛
)𝑛                                                             (3) 

Now  

              ∑(𝑎1𝑎2 … … … . . 𝑎𝑛)
1

𝑛    =   ∑(𝑎1𝑎2 … … … . . 𝑎𝑛)
1

𝑛 . 1 

                                                                 =    ∑(𝑎1𝑎2 … . . 𝑎𝑛)
1

𝑛 .
(𝑐1𝑐2……𝑐𝑛)

1
𝑛

𝑛+1
      

This implies       ∑(𝑎1𝑎2 … … … . . 𝑎𝑛)
1

𝑛  =   
∑(𝑐1𝑐2………𝑐𝑛)

1
𝑛

𝑛+1
                            (4)  
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By Arithmetic-Geometric Mean Inequality, we get from (4) 

        ∑(𝑎1𝑎2 … … … . . 𝑎𝑛)
1

𝑛    ≤   ∑
𝑎1𝑐1+𝑎2𝑐2+⋯………..𝑎𝑛𝑐𝑛

𝑛(𝑛+1)
                                        (5) 

We have  

             [𝑎1𝑐1 (
1

1.2
+

1

2.3
+ ⋯ … ) + 𝑎2𝑐2 (

1

2.3
+

1

3.4
+ ⋯ ) + ⋯ + 

                                                          𝑎𝑘𝑐𝑘 (
1

𝑘(𝑘 + 1)
+

1

(𝑘 + 1)(𝑘 + 2)
+ ⋯ … ) + ⋯ ]   

                = ∑ 𝑎𝑘𝑐𝑘 (
1

𝑘(𝑘+1)
+

1

(𝑘+1)(𝑘+2)
+ ⋯ … … … … . . )∞

𝑘=1   

                = ∑ 𝑎𝑘𝑐𝑘 ∑ (
1

𝑛(𝑛+1)
)∞

𝑛=𝑘
∞
𝑘=1                                                                (6) 

We  have        ∑ (
1

𝑛(𝑛+1)
)∞

𝑛=𝑘  =   ∑ (
1

𝑛
−

1

𝑛+1
)∞

𝑛=𝑘   

                                                         =      (
1

𝑘
−

1

𝑘+1
)  + (

1

𝑘+1
−

1

𝑘+2
) +  … … … ….  

                                                           =
1

𝑘
                                                                      (7) 

Therefore from (5) , (6) and (7) , we get 

              ∑(𝑎1𝑎2 … … … . . 𝑎𝑛)
1

𝑛  ≤   ∑ 𝑎𝑘
𝑐𝑘

𝑐𝑘

∞
𝑘=1   

                                                       =  ∑ 𝑎𝑘
∞
𝑘=1 (

𝑘+1

𝑘
)𝑘                 𝑏𝑦 (3) 

                                   =   ∑ 𝑎𝑘(1 +
1

𝑘

∞
𝑘=1 )𝑘 

                                     ≤   𝑒 ∑ 𝑎𝑘
∞
𝑘=1        (𝑎𝑠 𝑙𝑖𝑚

𝑘→∞
(1 +

1

𝑘
)𝑘 =  𝑒). 

Therefore  (1 +
1

𝑘
)𝑘    ≤    𝑒       ∀  𝑘 ≥ 1. 

𝐻𝑒𝑛𝑐𝑒   ∑(𝑎1𝑎2 … … … . . 𝑎𝑛)
1

𝑛   ≤   𝑒 ∑ 𝑎𝑛
∞
𝑛=1   . 

This shows that  ∑(𝑎1𝑎2 … … … . . 𝑎𝑛)
1

𝑛  is convergent as    ∑𝑎𝑛 is convergent .              
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Conditional and Absolutely Convergence. 

Definition 1.2.  A series ∑𝑎𝑛 is said to be absolutely convergent if 

∑ |𝑎𝑛|  is convergent. 

Conditional Convergence 1.3.  A series which is convergent but 

not absolutely convergent is said to conditional convergent. 

That is, if ∑𝑎𝑛 is convergent but ∑|𝑎𝑛| is not convergent . 

 Then, ∑𝑎𝑛 is conditional convergent. 

Example 1.1.  Consider a series  ∑ (
−1)n

n2
) . 

Then,  ∑ (
−1)𝑛

𝑛2
)  is convergent. 

Also, ∑ |(
−1)𝑛

𝑛2
)|= ∑

1

𝑛2
  is convergent . 

Therefore  ,   ∑ (
−1)𝑛

𝑛2
)   is absolutely convergent . 

 Example 1.2. Consider a series  ∑ (
−1)n

n
) . 

Then,    ∑ (
−1)n

n
)  is convergent . 

But,  ∑ |(
−1)n

n
)|  = ∑

1

n
   is not convergent. 

Therefore ,   ∑ (
−1)n

n
)   is conditional convergent . 

Theorem 1.2. Every absolutely convergent series is convergent.  

or   The convergence of   ∑|𝑎𝑛|   implies the convergence of  ∑ 𝑎𝑛. 

Proof: Suppose  ∑  |𝑎𝑛|  is convergent . 

Hence for every 𝜖 > 0 , by Cauchy′s  general principal of convergence. 
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There exists  a positive integer 𝑚 such that , 

   ||𝑎𝑛+1| + |𝑎𝑛+2| + ⋯ … . . +|𝑎𝑛+𝑝|| <  𝜖     ∀ 𝑛 ≥ 𝑚 𝑎𝑛𝑑 𝑝          

                                              81

                                                                                                                                                                           

Also, for all ∀ n ≥ m and p > 1 ,we have 

|an+1 + an+2 + ⋯ … … … … + an+p|    

                                                   ≤ |an+1| + |an+2| + ⋯ … . . +|an+p| < 𝜖         𝑏𝑦 (8) .      

Therefore by Cauchy′criteria , ∑ 𝑎𝑛  is convergent . 

     Remark 1.  Divergence of ∑|𝑎𝑛| does not imply divergence of ∑ 𝑎𝑛 .  

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 1. 3. The given series 

                 ∑ |(
−1)𝑛

𝑛
)|  is divergent . 

 But , the series     ∑ (
−1)𝑛

𝑛
)     is convergent. 

This shows that the  converse of above theorem is not true in general . 

 

Test for Series of arbitrary terms. 

We now consider arbitrary term series which are convergent (but 

not necessarily absolutely convergent) and obtain tests for their 

convergence. We first prove an important lemma, due to Abel’s. 

Lemma 1.1.  If  𝑏𝑛 is positive , monotonic decreasing function and if 𝐴𝑛  

is bounded , then the series  ∑ 𝐴𝑛 (𝑏𝑛 − 𝑏𝑛−1) is absolutely convergent.  

𝐏𝐫𝐨𝐨𝐟: Since 𝐴𝑛 is bounded . 

 Therefore there exists  a positive number 𝑘, such that , 
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                       |𝐴𝑛| ≤ 𝑘,        ∀ 𝑛 . 

Thus,              ∑ |𝐴𝑛(𝑏𝑛 − 𝑏𝑛+1)|𝑚
𝑛=1   

 

     ∑ |𝐴𝑛||(𝑏𝑛 − 𝑏𝑛+1)|𝑚
𝑛=1    = ∑ |𝐴𝑛|(𝑏𝑛 − 𝑏𝑛+1)𝑚

𝑛=1          )(
1 nn

bb 


                          

                                                      ≤ ∑ 𝑘(𝑏𝑛 − 𝑏𝑛+1)𝑚
𝑛=1  

                                                  = k ( 𝑏𝑛 − 𝑏𝑛+1)< k 𝑏1. 

Thus, the sequence of partial sums of positive term series, 

               ∑ |𝐴𝑛(𝑏𝑛 − 𝑏𝑛+1)|𝑚
𝑛=1  is bounded   above by  𝑘𝑏1, so that     

                 ∑ |𝐴𝑛(𝑏𝑛 − 𝑏𝑛+1)|𝑚
𝑛=1 is convergent . 

Hence ∑ 𝐴𝑛( (𝑏𝑛 − 𝑏𝑛+1)  is  absolutely  convergent . 

Theorem Abel’s test 1.3. 

 If 𝑏𝑛 is positive monotonic decreasing and if ∑ 𝑢𝑛  is a convergent series, then 

       the series   ∑ 𝑢𝑛𝑏𝑛   is also convergent. 

Proof:  Let              𝑉𝑛   = 𝑢𝑛𝑏𝑛  and 

                         𝑆𝑛    =   ∑ 𝑢𝑖
𝑛
𝑖=1     ,    𝑉𝑛 =   ∑ 𝑣𝑖

𝑛
𝑖=1  . 

Then , 

           𝑉𝑛 = 𝑢1𝑏1 + 𝑢2𝑏2 + ⋯ + 𝑢𝑛𝑏𝑛 

                = 𝑆1𝑏1 + (𝑆2 − 𝑆1)𝑏2 + (𝑆3 − 𝑆2)𝑏3 + ⋯ . . (𝑆𝑛 − 𝑆𝑛−1)𝑏𝑛 

               = 𝑆1(𝑏1 − 𝑏2) + 𝑆2(𝑏2 − 𝑏3) … … . +𝑆𝑛−1(𝑏𝑛−1 − 𝑏𝑛) + 𝑆𝑛𝑏𝑛 

               = ∑ 𝑆𝑖(𝑏𝑖 − 𝑏𝑖+1) + 𝑆𝑛𝑏𝑛
𝑛−1
𝑖=1                                                       (9)      

Since,  ∑ 𝑢𝑛 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡 . Therefore, the sequence  < 𝑆𝑛 >

𝑖𝑠 𝑎𝑙𝑠𝑜 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡 . 

  Also , bn is positive and monotonic decreasing function . 
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Therefore by above lemma , the series ∑ 𝑆𝑛(𝑏𝑛 − 𝑏𝑛+1) is absolutely 

convergent and hence the partial sums  ∑ 𝑆𝑖(𝑏𝑖 − 𝑏𝑖+1)𝑛−1
𝑖=1   tends to 

finite limit as 𝑛 → ∞. 

Also, since 𝑏𝑛 monotonic decreasing and bounded below by  0. 

    Therefore < bn > is convergent and so 𝑏𝑛 tends to a finite limit as 𝑛 → ∞ . 

Hence 𝑆𝑛𝑏𝑛 tends to finite limit as 𝑛 → ∞. 

By using the above result we find from (ix)  𝑡ℎ𝑎𝑡  𝑉𝑛 tends to finite 

limit as 𝑛 → ∞ . 

That is the sequence < 𝑉𝑛 >   of partials sums of ∑ 𝑉𝑛 converges . 

 Consequently the series  ∑ 𝑉𝑛 𝑜𝑟  ∑ 𝑢𝑛𝑏𝑛 converges . 

Remark.  A convergent series   ∑ 𝑢𝑛  remain convergent if its terms 

are multiplied by′𝑎𝑛′  where 𝑎𝑛 is bounded and monotonic decreasing . 

   Theorem Drichlet’s Test 1.4. 

If  𝑏𝑛  is positive monotonic decreasing with limit  0 and if for the series   ∑ 𝑢𝑛 . 

The sequence {𝑆𝑛} of partial sums of    ∑ 𝑢𝑛 is bounded, then the series    

∑ 𝑢𝑛 𝑏𝑛  is convergent. 

Proof.  Let    𝑆𝑛 =    ∑ 𝑢𝑖
𝑛
𝑖=1 ,    𝑉𝑛  = 𝑢𝑛𝑏𝑛 

       and                 𝑉𝑛  =   ∑ 𝑉𝑖
𝑛
𝑖=1    =   ∑ 𝑢𝑖

𝑛
𝑖=1 𝑏𝑖    .  

       Then , as before 

                 𝑉𝑛  =   ∑ 𝑆𝑖(𝑏𝑖 − 𝑏𝑖+1) + 𝑆𝑛𝑏𝑛                                               (10)𝑛−1
𝑖=1  

Since 𝑆𝑛 is bounded and 𝑏𝑛 is positive and monotonic decreasing . 

Therefore by above Lemma ∑ 𝑆𝑖
𝑛
𝑖=1  (𝑏𝑖 − 𝑏𝑖+1) tends to finite limit as 𝑛 → ∞. 

    Also, since  𝑏𝑛 → 0 and 𝑛 → ∞, 𝑆𝑛  is bounded. 
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Therefore,  𝑆𝑛𝑏𝑛 → 0   𝑎𝑠  𝑛 → ∞ . 

Using the above result we find from (x) that 𝑉𝑛 tends to finite limit as 𝑛 → ∞ 

and hence the series ∑ 𝑉𝑛   = ∑ 𝑢𝑛𝑏𝑛 converges. 

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟏. 𝟒.   Show that the series 

                  0 −
1

2
+

1

22
−

1

3
+

2

32
−

1

4
+

3

42
− ⋯       is convergent . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧. Take         ∑ 𝑉𝑛 = 1 − 1 +
1

2
−

1

2
+

1

3
−

1

3
+ ⋯                    (11) 

𝑎nd                      ∑ 𝑢𝑛 = 0 +
1

2
+

1

2
+

2

3
+

3

4
+

3

4
… .. 

Since series (11) is convergent and the < 𝑢𝑛 > 𝑖𝑠 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐 𝑎𝑛𝑑 𝑏𝑜𝑢𝑛𝑑𝑒𝑑. 

    Therefore   ∑ 𝑉𝑛𝑢𝑛 = 0 −
1

2
+

1

22
−

1

3
+

2

32
−

1

4
+

3

42
− ⋯ … is convergent. 

𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟑. 𝟓.  Test for the convergence of series,  ∑ (
(𝑛3+)

1
3−𝑛  

𝑙𝑜𝑔𝑛
). 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧.   Let    𝑢𝑛 =   { ( 𝑛3 +)
1

3 − 𝑛}     and       𝑏𝑛 =  
1

𝑙𝑜𝑔𝑛
 . 

Since ∑ 𝑢𝑛 is convergent and {𝑏𝑛}is positive , monotonic decreasing  

sequence tends to 0 as 𝑛 → ∞. 

Therefore ∑ 𝑢𝑛𝑣𝑛 is convergence . 

Hence given series convergent .  

Rearrangement of Terms. 

If the terms of finite sum are rearranged then the sum of finite 

series remains same. But if the term of infinite series are 

rearranged, then the sum of infinite series varies.  

 Example.   Consider the series 
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               1 −
1

2
+

1

3
−

1

4
+ ⋯ converges to the sum 𝑆. 

But , if terms of above series rearranged so that each positive term is followed   

 by  two negative terms, then the series 

                         1 −
1

2
−

1

4
+

1

3
−

1

6
−

1

8
+ ⋯ converges to  

1

2
 𝑆. 

Another rearrangement of above series say  

(
1

2
+

1

4
+

1

6
+

1

8
+ ⋯ … … … . ) − (1 +

1

3
+

1

5
+ ⋯ … … … … … … … . )  diverges. 

Thus, if the series  ∑ 𝑢𝑛 is convergent, then the rearrangement of 

this series may diverge. 

Rieman’s Theorem 1.5. By an appropriate rearrangement of the 

terms a conditional convergent series ∑ 𝑢𝑛 can be  

(i) Converge to any number σ  or  

(ii) Diverge to +∞ 

(iii) Diverge to −∞ 

(iv) Can oscillate finitely 

(v) Can oscillate infinitely. 

    Proof.   Let           𝑎𝑛 = {
𝑢𝑛,    𝑖𝑓 𝑢𝑛 ≥ 0
0,       𝑖𝑓 𝑢𝑛 < 0 

   

     and                          𝑏𝑛 =  {
−𝑢𝑛,    𝑖𝑓 𝑢𝑛 < 0
0,       𝑖𝑓 𝑢𝑛 ≥ 0 

   . 

Then, clearly 𝑎𝑛 and 𝑏𝑛 are non − negative and  

                      𝑢𝑛 = 𝑎𝑛 − 𝑏𝑛 

                     |𝑢𝑛|  =   𝑎𝑛 + 𝑏𝑛                                                                                 (12) 

Since    ∑ 𝑢𝑛 𝑖𝑠 conditional convergent . 
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Therefore ∑|𝑢𝑛| diverges and hence from (12) , at least one of the series 

∑ 𝑎𝑛 , 𝑜𝑟 ∑ 𝑏𝑛 diverges. 

Again, Since ∑ 𝑢𝑛 is convergent . 

Therefore from (12), it follows that the two series ∑ 𝑎𝑛,  

∑ 𝑏𝑛  either both converges or both diverges .  

Thus,   ∑ 𝑎𝑛  and   ∑ 𝑏𝑛  both diverges . 

Also, 𝑎𝑛 → 0, 𝑏𝑛 → 0                     (𝑏𝑒𝑐𝑎𝑢𝑠𝑒  𝑢𝑛 → 0  𝑎𝑠 𝑛 → ∞). 

(i)  We shall first show that a rearrangement ∑ 𝑉𝑛  𝑜𝑓 ∑ 𝑢𝑛 can be found 

which converges to any number σ. 

Let  𝑛1 be the least number of terms of ∑ 𝑎𝑛 , such that  

                      𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛1   >    𝜎 

Let    𝑚1 be the least number of terms of the series ∑ 𝑏𝑛,  such that  

          𝑎1 + 𝑎2 + ⋯ + ⋯ + 𝑎𝑛1
− 𝑏1 − 𝑏2 − ⋯ − 𝑏𝑚1

< 𝜎 

Again, let  𝑛2 be the number of terms of ∑ 𝑎𝑛, other than previous, such that  

      𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛1
− 𝑏1 − 𝑏2 … . −𝑏𝑚1

+ 

                                                        +𝑎𝑛1+1
+ 𝑎𝑛1+2

+ ⋯ + 𝑎𝑛𝑛1+𝑛2
> 𝜎 

Let  𝑚2 be the least no. of next terms of ∑ 𝑏𝑛, such that  

𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛1
− 𝑏1 − 𝑏2 − ⋯ − 𝑏𝑚1

+    

                    +𝑎𝑛1+1
+ 𝑎𝑛1+2

+ ⋯ + 𝑎𝑛𝑛1+𝑛2
− 𝑏𝑚1+1

− 𝑏𝑚1+2
− ⋯ − 𝑏𝑚1+𝑚2

< 𝜎 

The process may be continued indefinitely. The process indicated 

above is always possible, because of the divergence of two series  ∑ 𝑎𝑛 , 

and ∑ 𝑏𝑛. 
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Let  ∑ 𝑉𝑛  be the rearranged series and {𝜎𝑛}its sequence of partial sums. 

Clearly,   𝜎𝑛1
> 𝜎,  𝜎𝑛1+𝑚1

< 𝜎𝑛1+𝑚1+𝑚2
> 6,     6𝑛1+𝑚1+𝑛2+𝑚2

< 𝜎 

Therefore it can be easily shown that the sequence {𝜎𝑛} converges to 𝜎. 

This implies that  

(i) The rearrangement series ∑ 𝑉𝑛 converges to 𝜎. 

(ii) We shall now show that a suitable rearrangement   

of  ∑ 𝑎𝑛 , can be found which  diverges to  + ∞ . 

Let us consider the rearrangement  

             𝑎1 + 𝑎2+……..𝑎𝑚1
− 𝑏1+𝑏𝑚1+1

+ ⋯ 

                                                                                       +𝑎𝑚2
− 𝑏2 + 𝑎𝑚2+1

+ ⋯ 

in which a group of positive terms followed by single negative term. 

This is certainly a rearrangement of ∑ 𝑢𝑛 and let us denote it by ∑ 𝑉𝑛  

and its partial sum by 𝑆𝑛 . 

Now since the series 

∑ an is divergent , its partial sums are therefore unbounded  .   

 Let us choose 𝑚1 , so large that 𝑎1 + 𝑎2 + ⋯ … . . +𝑎𝑚1
> 1 + 𝑏1 

Then, 

              𝑚2 > 𝑚1 , so large    such that 

𝑎1 + 𝑎2 + ⋯ … . . 𝑎𝑚1
+ ⋯ . +𝑎𝑚2

> 2 + 𝑏1 + 𝑏2  

And in general  𝑚𝑛 > 𝑚𝑛−1 so large that  

𝑎1 + 𝑎2 + ⋯ + 𝑎𝑚𝑛 > 𝑛 + 𝑏1 + 𝑏2 + ⋯ + 𝑏𝑛  for n=1,2,3….       . 

Now since each of the partial sum 𝑆𝑚1+1
, 𝑆𝑚2+1

, … of ∑ 𝑉𝑛 whose  
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last term is negative term − 𝑏𝑛 is greater than 𝑛(𝑛 = 1,2,3 … … . . ). 

Thus, the series  ∑ 𝑉𝑛  diverges to   + ∞ . 

(ii) By considering the rearrangement  

       −𝑏1 − 𝑏2 − ⋯ . . 𝑏𝑚1
+ 𝑎1 − 𝑏𝑚1+2

− ⋯ . . −𝑏𝑚2
+ ⋯ . . it can be  

This  show that the rearrangement diverges to   − ∞. 

Other cases may similarly be proved by considering the suitable 

rearrangement of given series. 

Example 1.6.  Criticize the following paradox  

            1 −
1

2
+

1

3
−

1

4
+ ⋯ … … … … … … .. 

                           =   (1 +
1

2
+

1

3
+ ⋯ … ) − 2 (

1

2
+

1

4
+ ⋯ . . ) 

                           =(1 +
1

2
+

1

3
+ ⋯ … . . ) − (1 −

1

2
− ⋯ … … . . ) 

                            = 0 

Hence the series converges to zero. 

Multiplication of Series. 

Definition 1.3.  Given two series ∑ 𝑎𝑛 and ∑ 𝑏𝑛 . 

We put     𝐶𝑛   =   ∑ 𝑎𝑘𝑏𝑛−𝑘(𝑛 = 0,1,2, … … . )∞
𝑘=0   

and call ∑ 𝐶𝑛 , the cauchy′s  product of  ∑ 𝑎𝑛  and  ∑ 𝑏𝑛.  

Here           ∑ 𝑎𝑛  ∑ 𝑏𝑛  =  ∑ 𝐶𝑛 . 

Let us denoted by 

                    𝐴𝑛 = 𝑎0 + 𝑎1 + 𝑎2 + ⋯ … + 𝑎𝑛 

                   𝐵𝑛 = 𝑏0 + 𝑏1 + 𝑏2 + ⋯ … . +𝑏𝑛 
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  and          𝐶𝑛 =   (𝑎0𝑏0) + (𝑎1𝑏0 + 𝑎0𝑏1) + 𝑎2𝑏0 + 𝑎1𝑏1 + 𝑎0𝑏2) +

                                                                                    … (𝑎0𝑏𝑛 + ⋯ + 𝑎𝑛𝑏0)  

Note that      𝐴𝑛𝐵𝑛 ≠   𝐶𝑛. 

Marten’s Theorem 1.6. Suppose    ∑ 𝑎𝑛 = 𝐴 

 and      ∑ 𝑏𝑛 = 𝐵   and   ∑ 𝑎𝑛  is absolutely  Convergent, 

 Then,  𝐿𝑖𝑚 𝐶𝑛 = 𝐴𝐵. 

Proof.  Put        𝐴𝑛 = 𝑎0 + 𝑎1 + 𝑎2 + ⋯ … + 𝑎𝑛 

                      𝐵𝑛 = 𝑏0 + 𝑏1 + 𝑏2 + ⋯ . . +𝑏𝑛 

and                         𝛽𝑛  =   𝐵𝑛 − 𝐵        where  𝛽𝑛 → 0   𝑎𝑠 𝑛 → ∞. 

Then,          𝐶𝑛    =   ∑ 𝑎𝑘𝑏𝑛−𝑘
𝑛
𝑘=0  

                         = 𝑎0𝑏0 + (𝑎0𝑏1 + 𝑎1𝑏0) + ⋯ + (𝑎0𝑏𝑛 + 𝑎1𝑏𝑛−1 + ⋯ . +𝑎𝑛𝑏0) 

                        =    𝑎0𝐵𝑛 + 𝑎1(𝐵𝑛−1) + ⋯ . . +𝑎𝑛𝐵𝑜 

                        = 𝑎0(𝛽𝑛 + 𝐵) + 𝑎1(𝛽𝑛−1 + 𝐵) + ⋯ … … + 𝑎𝑛(𝛽0 + 𝐵) 

                       = 𝐵 (𝑎0 + 𝑎1 + 𝑎2 + ⋯ … + 𝑎𝑛) 

                                                          +𝑎0𝛽𝑛 + 𝑎1𝛽𝑛−1 + ⋯ . . +𝑎𝑛𝛽0 . 

This implies that    𝐶𝑛  =   𝐴𝑛𝐵 + 𝛾𝑛 

                                        where  𝛾𝑛 = 𝑎0𝛽𝑛 + 𝑎1𝛽𝑛−1 + ⋯ + 𝑎𝑛𝛽0 . 

𝑇𝑜 𝑝𝑟𝑜𝑣𝑒 𝑡ℎ𝑎𝑡  𝐶𝑛  → 𝐴𝐵. 

Since 𝐴𝑛𝐵 → 𝐴𝐵 , 𝑖t is suffice to show that  

                            𝛾𝑛  → 0 𝑎𝑠   𝑛 → ∞. 

Put       𝛼  =   ∑|𝑎𝑛| . 

   Since 𝛽𝑛 → 0  𝑎𝑠   𝑛 → ∞. 
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Hence given 𝜖 > 0 , 𝑤𝑒 𝑐𝑎𝑛 find 𝑁  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

    |𝛽𝑛| < 𝜖,          ∀   𝑛 ≥ 𝑁./ 

Therefore, 

            |𝛾𝑛|  =  |𝑎𝑛𝛽0 + 𝑎𝑛−1𝛽1 + ⋯ 𝑎𝑛−𝑁+1𝛽𝑁−1 + 𝑎𝑛−𝑁𝛽𝑁 + ⋯ . +𝑎0𝛽𝑛| 

                      ≤ |𝑎𝑛𝛽0 + 𝑎𝑛−1𝛽1 + ⋯ 𝑎𝑛−𝑁+1𝛽𝑁−1| + |𝑎𝑛−𝑁𝛽𝑁 + ⋯ … . +𝑎0𝛽𝑛| 

                       ≤  |𝑎𝑛𝛽0 + 𝑎𝑛−1𝛽1 + ⋯ … … 𝑎𝑛−𝑁+1𝛽𝑁−1| + 𝜖𝛼 . 

Keeping 𝑁 fixed and Letting 𝑛 → ∞ and noting  that 𝑎𝑛 → 0 𝑎𝑠 𝑛 → ∞. 

We get, 

                  𝐿𝑖𝑚
𝑛→∞

 |𝛾𝑛|   ≤  𝜖 𝛼 . 

Now letting ϵ → 0, we get 

                              𝐿𝑖𝑚
𝑛→∞

 |𝛾𝑛| = 0. 

This implies   𝐿𝑖𝑚
𝑛→∞

 𝛾𝑛 = 0. 

Thus               𝑙𝑖𝑚
𝑛→∞

𝐶𝑛 = 𝐴𝐵. 

 

Uniform Continuity. 

Definition 1.4. A function 𝑓 on interval I is uniformly continuous if for 

each 𝜖 > 0, ∃ 𝛿 > 0  ,such that 

                  |𝑓(𝑥1) − 𝑓(𝑥2)|   < 𝜖        𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 |𝑥1 − 𝑥2| < 𝛿      𝑥1 , 𝑥2  ∈ 𝐼. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟕.  If 𝑓 is uniformly contineous on 𝐼, then it is contineous on that  

interval . 

𝐏𝐫𝐨𝐨𝐟.  Suppose 𝑓 is uniformly contineous on 𝐼. Then  , ∀   휀 > 0, ∃  𝛿 >

      0,   such that 
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    |𝑓(𝑥1) − 𝑓(𝑥2)|   < 𝜖   𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 |𝑥1 − 𝑥2| < 𝛿                𝑥1, 𝑥2  ∈ 𝐼                       (13) 

Let      𝑎 ∈ 𝐼. 

Then,   for all ϵ > 0,    ∃   𝛿 > 0, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡     

       |𝑓(𝑥) − 𝑓(𝑎)|   < 𝜖                            𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 |𝑥 − 𝑎| < 𝛿 

This implies 𝑓 is contineous at 𝑥 = 𝑎.   Since ′𝑎′is choose arbitrary. 

Therefore 𝑓 is contineous on I. 

Heine’s Theorem 1.8.  A function which is continuous on closed 

interval [𝑎, 𝑏], then it is uniformly continuous on [𝑎, 𝑏] . 

Proof.  𝑓 is contineous on [a, b]. 

Let if possible f be not uniformly continuous on 𝐼 = [𝑎, 𝑏] then there exit 

휀 > 0, such that for any 𝛿 > 0, there are numbers  𝑥, 𝑦 ∈ 𝐼 , for which 

      |𝑓(𝑥) − 𝑓(𝑦)| ≮  휀         whenever        |𝑥 − 𝑦| < 𝛿 . 

Hence for each positive n, we can find 𝑥𝑛,  𝑦𝑛  휀  𝐼,  such that 

         |𝑓(𝑥𝑛) − 𝑓(𝑦𝑛)| ≥ 𝜖                                                                                        (14) 

whenever     |𝑥𝑛 − 𝑦𝑛|<δ . 

Since {𝑥𝑛} , {𝑦𝑛} being sequence in I , they are bounded and therefore each has  

atleast one limit point say 𝑎1 and 𝑎2 respectively . 

Since I is closed set. 

Therefore 𝑎1, 𝑎2  ∈ 𝐼. 

Since 𝑎1 is limit point of {𝑥𝑛}, there exits a convergent subsequence {𝑥𝑛𝑘} 

of  {𝑥𝑛}, such that  

                     𝑥𝑛𝑘 → 𝑎1 𝑎𝑠   𝑘 → ∞. 
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Similarly there exists a convergent subsequence {𝑦𝑛𝑘} 𝑜𝑓 {𝑦𝑛}, such that 

                     𝑦𝑛𝑘  → 𝑎2 𝑎𝑠  𝑘 → ∞. 

Again from (14) 

                      |𝑓(𝑥𝑛𝑘) − 𝑓(𝑦𝑛𝑘)|≮ ϵ 

Whenever      |(𝑥𝑛𝑘) − (𝑦𝑛𝑘)| <   
1

𝑛𝑘
  ≤     

1

𝑘
                                        (15)   

Second inequality shows that    

                        𝑙𝑖𝑚
𝑘→0

𝑥𝑛𝑘 =   𝑙𝑖𝑚
𝑘→∞

𝑦𝑛𝑘 . 

This implies  

                           𝑎1 = 𝑎2 = 𝑎 . 

But, { 𝑓(𝑥𝑛𝑘)}  𝑎𝑛𝑑  {𝑓(𝑦𝑛𝑘)} Converges to two different numbers by (14)  

which contradicts to the fact that 𝑓 is continuous on 𝐼 = [𝑎, 𝑏]. 

Thus our supposition is wrong. 

Hence f is uniformly continuous on 𝐼 = [𝑎, 𝑏]. 

Exercise. Show that    (i)  𝑓(𝑥) = 𝑥2 is uniformly contineous on ]0,1].  

                                  (ii )  𝑓(𝑥2)  is uniformly contineous on [−1,1]. 

                                                     (iii)       𝑓(𝑥) = 𝑠𝑖𝑛𝑥 is uniformly contineous on [0, ∞). 

Darboux’s  Theorem 1.9. If 𝑓 is derivable on [𝑎, 𝑏] and 𝑓′(𝑎)  ≠   𝑓′(𝑏),  

then for any number  𝑘 between 𝑓′(𝑎)and 𝑓′(𝑏) , ∃ 𝑐 ∈ (𝑎, 𝑏), such that    

                                         𝑓′(𝑐) = 𝑘 . 

𝐏𝐫𝐨𝐨𝐟.  Suppose   𝑓′(𝑎) < 𝑘 <   𝑓′(𝑏). 

Consider a function   𝑔(𝑥) = 𝑓(𝑥) − 𝑘(𝑥). 



17 
 

  Then,   𝑔′(𝑎)  =   𝑓′(𝑎) − 𝑘  < 0 

   and         𝑔′(𝑏) =   𝑓′(𝑏) − 𝑘 > 0 . 

By definition,  𝐿𝑖𝑚
𝑥→𝑎

𝑔(𝑥)−𝑔(𝑎)

𝑥−𝑎
  =   𝑔′(𝑎) 

 and           𝐿𝑖𝑚
𝑥→𝑏

𝑔(𝑥)−𝑔(𝑏)

𝑥−𝑏
  =   𝑔′(𝑏). 

Thus, ∀ ϵ > 0 ,  ∃   𝛿1 𝛿2, such that  

                  |
𝑔(𝑥)−𝑔(𝑎)

𝑥−𝑎
− 𝑔′(𝑎)| < 𝜖         when     |𝑥 − 𝑎| < 𝛿1   

 and  

                  |
𝑔(𝑥)−𝑔(𝑏)

𝑥−𝑏
− 𝑔′(𝑏)| < 𝜖          when      |𝑥 − 𝑏| < 𝛿2 .   

Let     δ = 𝑚𝑖𝑛{𝛿1 𝛿2 }. 

Then           |
𝑔(𝑥)−𝑔(𝑎)

𝑥−𝑎
− 𝑔′(𝑎)| < 𝜖 and   |

𝑔(𝑥)−𝑔(𝑏)

𝑥−𝑏
− 𝑔′(𝑏)| < 𝜖                                                                   

  whenever      |𝑥 − 𝑎| < 𝛿 , |𝑥 − 𝑏| < 𝛿. 

This implies  

               𝑔′(𝑎) − 𝜖 <  
𝑔(𝑥)−𝑔(𝑎)

𝑥−𝑎
< 𝑔′(𝑎) + 𝜖, 

This implies that                   

                   𝑔′(𝑏) − 𝜖 <   
𝑔(𝑥)−𝑔(𝑏)

𝑥−𝑏
< 𝑔′(𝑏) +  𝜖   

                               whenever   |𝑥 − 𝑎| < 𝛿 , |𝑥 − 𝑏| < 𝛿         (16) 

Choose ϵ so small , such that  

 𝑔′(𝑎) + 𝜖 < 0                                                                                         (17)                          

and      

        𝑔′(𝑏) −  𝜖 > 0 
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Thus from (1) and (2), we get  

                𝑔(𝑎 + ℎ) < 𝑔(𝑎),      𝑔(𝑎 − ℎ) > 𝑔(𝑎)  

and                      

       𝑔(𝑏 + ℎ) > 𝑔(𝑏),    𝑔(𝑏 − ℎ) < 𝑔(𝑏)            where 0 < ℎ < 𝛿        (18) 

Since 𝑔 is derivable on [𝑎, 𝑏]. 

Therefore  continuous on [𝑎, 𝑏]and attains supremum in [𝑎, 𝑏]. 

Clearly by (18)  𝑔  has no supremum at 𝑎 or at 𝑏. 

Then there exist  𝑐 ∈ (𝑎, 𝑏), such that  

                                𝑔(𝑐) =  𝑠𝑢𝑝 {𝑔(𝑥) } 

Claim:    𝑔′(𝑐) = 0  . 

If possible 𝑔′(𝑐) > 0. 

Then,     𝑔(𝑐 + ℎ) > 𝑔(𝑐) as before which is not possible. 

Also if,    𝑔′(𝑐) < 0 . 

 Then , 𝑔(𝑐 − ℎ) > 𝑔(𝑐) as  before  which is  again  not possible . 

Thus,   𝑔′(𝑐) = 0 . 

This implies that   

          𝑓′(𝑐) =   𝑘                 where       𝑐 ∈ (𝑎, 𝑏). 

Hence the theorem follows. 

Corollary. If 𝑓 is derivable in [𝑎, 𝑏] such that  𝑓′(𝑎) and 𝑓′(𝑏)are opposite 

 in sign , then there  exits   0 ∈ (𝑎, 𝑏), such that   𝑓′(0) = 0. 
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Theorem 1.10.   If  𝑙𝑖𝑚̅̅̅̅̅|𝑎𝑛|
1

𝑛  =  
1

𝑅
,  , then  

The sreies ∑ 𝑎𝑛𝑥𝑛  is convergent for |𝑥| < 𝑅 

and   diverges for  |𝑥|  > 𝑅. 

Proof.  We have   

                      𝑙𝑖𝑚̅̅̅̅̅
𝑛→∞|𝑎𝑛𝑥𝑛|1/𝑛 =𝑙𝑖𝑚̅̅̅̅̅|𝑎𝑛|

1

𝑛. |𝑥| =    
|𝑋|

𝑅
  .                                                                    

Therefore  ∑ 𝑎𝑛𝑥𝑛  converges, if  

        
|𝑋|

𝑅
< 1   and   diverges if   

|𝑥|

𝑅
> 1 . 

Thus,    ∑ 𝑎𝑛𝑥𝑛  converges, if   |𝑥| < 𝑅 

𝑎𝑛𝑑    diverges if      |𝑥|  > 𝑅    𝑤ℎ𝑒𝑛   𝑅 =
1

𝑙𝑖𝑚̅̅ ̅̅ ̅|𝑎𝑛|
1
𝑛

. 

Definition 1.5.  In view of above theorem, the radius of convergence 

of power series  ∑ 𝑎𝑛𝑥𝑛   is defined as  

      
1

𝑙𝑖𝑚̅̅ ̅̅ ̅|𝑎𝑛|
1
𝑛

,    𝑤ℎ𝑒𝑛   𝑙𝑖𝑚̅̅̅̅̅|𝑎𝑛|
1

𝑛  > 0   

                                         =  ∞      , 𝑤ℎ𝑒𝑛   𝑙𝑖𝑚̅̅̅̅̅|𝑎𝑛|
1

𝑛 =   0 

                                        =  0              , 𝑤ℎ𝑒𝑛    𝑙𝑖𝑚̅̅̅̅̅|𝑎𝑛|
1

𝑛 = ∞ 

Abel’s Limit Theorem 1.11. (First form, at Centre). 

If the power series converges at the end point 𝑥 = 𝑅 of the interval of 

the convergence – R < 𝑥 < 𝑅,   𝑡ℎ𝑒𝑛 𝑖𝑡 𝑖𝑠 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡 𝑖𝑛 [0, 𝑅]. 

Proof.  We shall show that under the given assumptions cauchy′s criteria for 

uniform convergence is satisfied in [0, 𝑅] . This will imply the uniform convergence  

of power series  ∑ 𝑎𝑛𝑥𝑛  on [0, 𝑅] .  
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Let      𝑆𝑛,𝑝 =   𝑎𝑛+1𝑅𝑛+1 + ⋯ . +𝑎𝑛+𝑝        for  𝑝 = 1,2,3, … … .. 

Then,  obiviously 

        𝑎𝑛+1𝑅𝑛+1  =   𝑆𝑛,1 

              𝑎𝑛+2𝑅𝑛+2  =   𝑆𝑛,2 − 𝑆𝑛,1 

          

  𝑎𝑛+𝑝 𝑅
𝑛+𝑝   = 𝑆𝑛.𝑝 − 𝑆𝑛,𝑝−1                                                    (19) 

    Let ϵ > 0 𝑏𝑒 𝑔𝑖𝑣𝑒𝑛  . Since the series  

∑ 𝑎𝑛𝑅𝑛  is convergent , therefore by Cauchy′sgeneral principal of convergence 

  there exists an integer 𝑁 such that for 𝑛 ≥  𝑁 

                 |𝑆𝑛.𝑞|  <  𝜖,                 ∀  𝑞 = 1,2,3 … . . ,                                         (20) 

Taking into account that 

    (
𝑋

𝑅
)

𝑛+𝑝
 ≤ (

𝑥

𝑅
)𝑛+𝑝−1  ≤ ⋯ ≤   ( 

𝑥

𝑅
)𝑛+1       𝑓𝑜𝑟   0 ≤ 𝑥 ≤ 𝑅 

                    Using (19) and (20), we have 

𝐹𝑜𝑟 𝑛 ≥ 𝑁 

   |𝑎𝑛+1𝑥𝑛+1 + 𝑎𝑛+2𝑥𝑛+2 + ⋯ … … … … . +𝑎𝑛+𝑝𝑥𝑛+𝑝|  

              = |𝑎𝑛+1𝑅𝑛+1(
𝑥

𝑅
)𝑛+1 + 𝑎𝑛+2𝑅𝑛+2(

𝑥

𝑅
)𝑛+2 + ⋯ … … + 𝑎𝑛+𝑝𝑅𝑛+𝑝(

𝑥

𝑅
)𝑛+𝑝| 

              =  |𝑆𝑛,1(
𝑥

𝑅
)𝑛+1 + (𝑆𝑛,2 − 𝑆𝑛,1)(

𝑥

𝑅
)𝑛+2 + ⋯ … … + (𝑆𝑛,𝑝𝑆𝑛,𝑝−1)(

𝑥

𝑅
)𝑛+𝑝| 
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              =  |
𝑆𝑛,1[(

𝑥

𝑅
)𝑛+1 − (

𝑥

𝑅
)𝑛+2] + 𝑆𝑛,2[(

𝑥

𝑅
)𝑛+2 − (

𝑥

𝑅
)𝑛+3] + ⋯ … …

                          +𝑆𝑛,𝑝−1[(
𝑥

𝑅
)𝑛+𝑝−1 − (

𝑥

𝑅
)𝑛+𝑝] + 𝑆𝑛,𝑝(

𝑥

𝑅
)𝑛+𝑝

|  

               ≤  |𝑆𝑛,1|  {((
𝑥

𝑅
)𝑛+1 − (

𝑥

𝑅
)𝑛+2} + |𝑆𝑛,2|[(

𝑥

𝑅
)𝑛+2 − (

𝑥

𝑅
)𝑛+3]+……                                                                     

                                               …....+|𝑆𝑛,𝑝−1|[(
𝑥

𝑅
)𝑛+𝑝−1 − (

𝑥

𝑅
)𝑛+𝑝]+|𝑆𝑛,𝑝|(

𝑥

𝑅
)𝑛+𝑝 

                <    ϵ     { (
𝑥

𝑅
)𝑛+1 − (

𝑥

𝑅
)𝑛+2 + (

𝑥

𝑅
)𝑛+2 −(

𝑥

𝑅
)𝑛+3 + ⋯ 

                                                    .  . . +(
𝑥

𝑅
)𝑛+𝑝−1 − (

𝑥

𝑅
)𝑛+𝑝}                       by  (20) 

                   =   𝜖 (
𝑥

𝑅
)𝑛+1   ≤    𝜖        ∀   n ≥ N,   𝑝 ≥ 1, ∀  𝑥 ∈ [0, 𝑅] . 

    Thus   ∀   𝜖 > 0, ∃  𝑁 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

       |𝑎𝑛+1𝑥𝑛+1 + 𝑎𝑛+2𝑥𝑛+2 + ⋯ … … … … . +𝑎𝑛+𝑝𝑥𝑛+𝑝| < 𝜖 

                                                                                               ∀  𝑛 ≥ 𝑁, 𝑝 ≥ 1,   𝑥 ∈ [0, 𝑅] . 

Hence by Cauchy’s criteria, the series converges uniformly on [0, R]. 

 Abel’s Theorem 1.12. (Second Form). 

 If  ∑ 𝑎𝑛𝑥𝑛  be power series with finite radius of convergence R and let   

  𝑓(𝑥)  =   ∑ 𝑎𝑛𝑥𝑅  , −𝑅 < 𝑥 < 𝑅 .   If the  ∑ 𝑎𝑛𝑅𝑛  𝑐onverges, then 

                              𝑙𝑖𝑚
𝑥→𝑅−0

𝑓(𝑥) =     ∑ 𝑎𝑛𝑅𝑛. 
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Proof.  Let us first show that there is no loss of generality in taking 

R=1 

                Put         𝑥 = 𝑅𝑦  ,   so that  

                              ∑ 𝑎𝑛𝑥𝑛 =    ∑ 𝑎𝑛𝑅𝑛 𝑦𝑛 

                                       =    ∑ 𝑏𝑛𝑦𝑛                  where  𝑏𝑛 = 𝑎𝑛𝑅𝑛 

It is power series with radius of convergence 𝑅′ 

 where          𝑅′  =  
1

𝑙𝑖𝑚̅̅ ̅̅ ̅|𝑎𝑛𝑅𝑛|
1
𝑛

  =   
1

𝑅
.

1

𝑙𝑖𝑚̅̅ ̅̅ ̅|𝑎𝑛|
1
𝑛

 

                                        =   
1

𝑅
. 𝑅 =    1 . 

Thus it suffice to prove the following: 

Let    ∑ 𝑎𝑛𝑥𝑛  be power series with unit radius of convergence and let  

                    𝑓(𝑥)  =      ∑ 𝑎𝑛𝑥𝑛 ,    − 1 < 𝑥 < 1 . 

If the    ∑ 𝑎𝑛 converges, then 

                         𝑙𝑖𝑚
𝑥→1_

𝑓(𝑥) =   ∑ 𝑎𝑛    

Let     𝑆𝑛 = 𝑎0 + 𝑎1 + ⋯ … . +𝑎𝑛 

              S−1 =  a0 

 and let     ∑ 𝑎𝑛
∞
𝑛=0 = 𝑆 = ∑ 𝑎𝑛,  
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Then,       ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0   =    ∑ (𝑠𝑛 − 𝑠𝑛−1)𝑥𝑛𝑚

𝑛=0   

              ∑ 𝑠𝑛𝑥𝑛 −𝑚
𝑛=0 ∑ 𝑠𝑛−1𝑥𝑛𝑚

𝑛=0  

              =  ∑ 𝑠𝑛𝑥𝑛 + 𝑠𝑚𝑥𝑚 −𝑚−1
𝑛=0 ∑ 𝑠𝑛−1𝑥𝑛𝑚

𝑛=0  

              =∑ 𝑠𝑛𝑥𝑛 − 𝑥 ∑ 𝑠𝑛−1𝑥𝑛−1 +𝑚
𝑛=0

𝑚−1
𝑛=0 𝑠𝑚𝑥𝑚 

              =   ∑ 𝑠𝑛𝑥𝑛 − ∑ 𝑠𝑛𝑥𝑛 +𝑚−1
𝑛=0

𝑚−1
𝑛=0 𝑠𝑚𝑥𝑚 

               =(1-x) ∑ 𝑠𝑛𝑥𝑛 +𝑚−1
𝑛=0 𝑠𝑚𝑥𝑚      for |𝑥| < 1, 𝑤ℎ𝑒𝑛   𝑚 → ∞,   

Since       𝑠𝑚 → 𝑠  and   𝑥𝑚 → 0,  we get 

            𝑓(𝑥)     = (1 − 𝑥)    ∑ 𝑠𝑛𝑥𝑛∞
𝑛=0 , 𝑓𝑜𝑟  0 < 𝑥 < 1                      (21) 

Again since 𝑠𝑛 → 𝑠, for ϵ > 0. 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑁, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

                  |𝑆𝑛 − 𝑠| <  
𝜖

2
                        ∀  𝑛 ≥ 𝑁                                        (22) 

Also,      (1 − 𝑥) ∑ 𝑥𝑛∞
𝑛=0 = 1  ,           for  |𝑥|<1                      (23) 

                                (((1 − 𝑥) ∑ 𝑥𝑛) = ∑ 𝑥𝑛 − ∑ 𝑥𝑛∞
0 − ∑ 𝑥𝑛+1∞

0
∞
0 = 1) )     

Hence for  𝑛 ≥ 𝑁 , we have  f𝑜𝑟 0 < 𝑥 < 1 

      |𝑓(𝑥) − 𝑠|     =    |(1 − 𝑥) ∑ 𝑠𝑛𝑥𝑛 − 𝑠∞
𝑛=0 |                                    𝑢𝑠𝑖𝑛𝑔   (21)             

                            =     |(1 − 𝑥) ∑ 𝑠𝑛𝑥𝑛 − (1 − 𝑥) ∑ 𝑥𝑛∞
𝑛=0 𝑠∞

𝑛=0 |              𝑏𝑦 (23) 

                             =    |(1 − 𝑥) ∑ (𝑠𝑛 − 𝑠)𝑥𝑛∞
𝑛=0 | 
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                              ≤    (1 − 𝑥) ∑ |(𝑠𝑛 − 𝑠)|𝑥𝑛∞
𝑛=0  

                             =   (1-x){∑ |(𝑠𝑛 − 𝑠)|𝑥𝑛 + ∑ |(𝑠𝑛 − 𝑠)|𝑥𝑛∞
𝑛=𝑁+1

𝑁
𝑛=0 }  

                            < (1-x) {∑ |(𝑠𝑛 − 𝑠)|𝑥𝑛 +
𝜖

2
∑ 𝑥𝑛∞

𝑛=𝑁+1
𝑁
𝑛=0 }    by (22)      

                             ≤   (1-x)∑ |𝑠𝑛 − 𝑠|𝑥𝑛𝑁
𝑛=0 +  

𝜖

2
  

  But for fixed N, (1-x)∑ |𝑆𝑛 − 𝑆|𝑁
𝑛=0 𝑥𝑛 is a positive continuous function of      

   X having zero value at x=1. 

Therefore, ∃ δ >0, such that for   1-δ < x < 1,                             

                    (1-x)∑ |𝑆𝑛 − 𝑆|𝑁
𝑛=0 𝑥𝑛  <

𝜖

2
 

            |𝑓(𝑥) − 𝑆| <
𝜖

2
+

𝜖

2
                  for  1 − 𝛿 < 𝑥 < 1 . 

Hence                       𝑙𝑖𝑚
𝑥→1−

𝑓(𝑥) = 𝑆 = ∑ 𝑎𝑛
∞
𝑛=0  . 

This completes the theorem. 
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In this section we shall study the theory of Riemann-Stieltjes 

integration which is the generalization of Riemann theory of 

Integration. It may be stated once for all that, unless otherwise stated, 

all functions will be real valued and bounded on the domain of 

definition. The function α will always be monotonic increasing.   

Definition & Existence of Riemann–Steiljes Integral (RS-Integral). 

  

Definition 2.1: Let f and   be bounded functions on  ba ,   and   be 

monotonic increasing function on  ba , ,  𝑏 ≥  𝑎  

Corresponding to any partition  

              ....
1210

bxxxxxa
nn



 

We write,      

            .,...,2,1
1

niforxxx
iii




          

It is clear that, .0
i

x                                  

As α be a monotonically is increasing function on  ba , . Since 

   banda    are finite, it follows that   is bounded on  ba ,  . 

Corresponding to each partition P of  ba , , we have  

         .,...,2,1)()(
1

niforxx
iii




  

It is clear that .0
i

   For any real function f which is bounded on 

 ba , , we have 

                            
i

n

i

MfPU   
1

,,                                                

                            
i

n

i

mfPL   
1

,,  
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where    
ii

mM ,   are the bounds (supremum and infimum of f 

respectively over ∆𝑥𝑖 =  [𝑥𝑖−1, 𝑥𝑖] . 

If m and M are the lower and the upper bounds f on [𝑎, 𝑏] , we have  

Then,           MMmm
ii
  

This implies that  

                      m ∑ ∆𝜶𝒊 
𝒏
𝒊=𝟏 ≤  ∑ 𝒎𝒊

𝒏
𝒊=𝟏  ∆𝜶𝒊 ≤ ∑ 𝑴𝒊

𝒏
𝒊=𝟏  ∆𝜶𝒊 ≤ M∑ ∆𝜶𝒊 

𝒏
𝒊=𝟏 .   

This implies  

  m∑ [𝛼(𝑥𝑖) − 𝛼(𝑥𝑖−1)] ≤ 𝐿(𝑝, 𝑓. 𝛼) ≤ 𝑈(𝑝, 𝑓, 𝛼) ≤ 𝑀 ∑ [𝛼(𝑥𝑖) − 𝛼(𝑥𝑖−1)𝑛
𝑖=1

𝑛
𝑖=1 ] 

This gives 

   𝑚 [𝛼(𝑏) − 𝛼(𝑎)]  ≤  𝐿(𝑝, 𝑓, 𝛼)  ≤  𝑈(𝑝, 𝑓, 𝛼)  ≤  𝑀 [𝛼(𝑏) − 𝛼(𝑎)]                (1) 

Since we have infinite number of partitions on [𝑎, 𝑏] and for every 

partition, we have upper sum and lower sum. 

Let 𝑆1 is the set of upper sums. And 𝑆2 be the set of lower sums  

That is  

                     𝑆1 =  {𝑈(𝑝, 𝑓, 𝛼) ∶  𝑝 ∈  𝑝 [𝑎, 𝑏] }, 

 and 

              𝑆2 =  { 𝐿(𝑝, 𝑓, 𝛼) ∶  𝑝 ∈  𝑝 [𝑎, 𝑏]}. 

From (1), 𝑆1 and 𝑆2 are bounded sets. 

Therefore 𝑆1 has greatest lower bounded and 𝑆2 has least upper bound. 

Let               g. l. b (𝑆1) =  ∫ 𝑓(𝑥)𝑑𝛼(𝑥)
−𝑏

𝑎
 , 

and              l. u. b (𝑆2) = ∫ 𝑓(𝑥)𝑑𝛼(𝑥)
𝑏

_𝑎
     

That is         ∫ 𝑓𝑑𝛼
−𝑏

𝑎
  =    𝐼𝑛𝑓. {𝑢(𝑝, 𝑓, 𝛼): 𝑝 𝜖 𝑝[𝑎, 𝑏]}, 
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and              ∫ 𝑓𝑑𝛼
𝑏

_𝑎
     =  𝑆𝑢𝑝. {𝑙(𝑝, 𝑓, 𝛼) ∶ 𝑝 𝜖 𝑝[𝑎, 𝑏]} 

These are respectively called upper and lower the integrals of   𝑓 with respect to α . 

These two integrals may or may not be equal. In case these two integrals are equal.  

                                          ∫ 𝑓 𝑑𝛼
−𝑏

𝑎
   =     ∫ 𝑓 𝑑𝛼

𝑏

_𝑎
 . 

We say f  is interable with respect to α in the Riemann sence and , we write  

𝑓 ∈ 𝑅𝛼[𝑎, 𝑏] or simply 𝑓 𝜖 𝑅𝛼  and the  common value is denoted by  

                                 ∫ 𝑓 𝑑𝛼
𝑏

𝑎
 

or   sometimes by                ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝛼(𝑥) 

and is called the Riemann − Stieltjes integral of f with respect to  over  [a, b]. 

If 

b

a

df     exists, then we say that f is integrable with respect to    , 

in the sense of Riemann, and, we write    .Rf   

By taking   ,xx 
 the Riemann integral will be a special case of the 

Riemann –Stieljies integral. 

Refinement of Partitions. 

Definition 2.2. For any partition 𝑃, the length of the largest sub – 

interval is called norm or mesh of the partition and is denoted by 

𝜇(𝑝), (or simply  𝜇) and (𝑃) =    𝑚𝑎𝑥 ∆𝑥𝑖   ,    1 ≤ 𝑖 ≤ 𝑛 . 

A partition p* is said to refinement of p if p ⊆ p*. 

We also say that p* refines P or that p* is finer than P. 
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If 𝑝1 and 𝑝2  are two partitions, then we say that p* is their common 

refinement if      

                                  p* = 𝑝1𝑈 𝑝2 . 

Theorem 2.1. If p* is a refinement of a partition p, then for a 

bounded function 𝑓, 

(i) 𝐿(𝑝, 𝑓, 𝛼)  ≤ (p*,,f ,𝛼) 

(ii) U(p*, f, 𝛼) ≤ 𝑈(𝑝, 𝑓, 𝛼) 

Proof. To prove (i), suppose first that p* contains just one point more 

than p. 

Let this extra point be 𝜉, and suppose this point is in ∆𝑥𝑖 = [𝑥𝑖−1, 𝑥𝑖], 

That is,      𝑥𝑖−1 <  𝜉 < 𝑥𝑖 . 

As the function is bounded on entire interval [a, b]. It is bounded in 

every sub interval ∆𝑥𝑖  ( 𝑖 = 1,2,3 … . 𝑛).  

Let 𝑤1, 𝑤2 , 𝑚𝑖 be the infimum of f in the intervals [𝑥𝑖−1, 𝜉], [𝜉, 𝑥𝑖] 𝑎𝑛𝑑 [𝑥𝑖−1, 𝑥𝑖], 

respectively . 

Clearly          𝑚𝑖 ≤ 𝑊1 , 𝑚𝑖 ≤ 𝑊2. 

We have  

    L (p*,f, 𝛼) − 𝐿 (𝑝, 𝑓, 𝛼) 

={𝑤1[𝛼(𝜉) − 𝛼(𝑥𝑖−1) + 𝑊2[𝛼(𝑥𝑖) − 𝛼(𝜉)] − 𝑚𝑖[α(xi) − α(xi−1)] 

= ( 𝑤1 − 𝑚𝑖  )[𝛼(𝜉) − 𝛼(𝑥𝑖−1)] + ( 𝑤2 − 𝑚𝑖  )[𝛼(𝑥𝑖) − 𝛼(𝜉)] 

     .0   

If p* contains k points more than p, we repeat this reasoning k times 

and conclude    
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                     𝐿(𝑝∗, 𝑓, 𝛼) − 𝐿(𝑝, 𝑓, 𝛼) ≥ 0 

This implies that  

                           𝐿(𝑝 ∗ , 𝑓, 𝛼) ≥ 𝐿 (𝑝, 𝑓, 𝛼)   

  or                  𝐿(𝑝, 𝑓, 𝛼)  ≤ (p*,,f ,𝛼) . 

(ii)  Home Assignment . The result follows from  Theorm 2.1 (1). 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟐. 𝟐.   If 𝑓 is bounded function on [𝑎, 𝑏] and 𝑝1, 𝑝2 ∈ 𝑃[𝑎, 𝑏], then 

                              𝐿(𝑝1, 𝑓, 𝛼) ≤ 𝑈(𝑝2, 𝑓, 𝛼). 

𝐏𝐫𝐨𝐨𝐟.  Let  𝑃 = 𝑝1 ∪ 𝑝2 be the common refinement of 𝑝1 and 𝑝2 . 

Then from the above theorem , we have  

                 𝐿(𝑝1, 𝑓, 𝛼) ≤ 𝐿(𝑝, 𝑓, 𝛼) ≤ 𝑈(𝑝, 𝑓, 𝛼) ≤ 𝑈(𝑝2, 𝑓, 𝛼). 

This gives    

                        𝐿 (𝑝1, 𝑓, 𝛼)  ≤ 𝑈(𝑝2, 𝑓, 𝛼) . 

Hence theorem 2.2 follows. 

Theorem 2.3.  If f be a bounded function on [a, b], then 

                       ∫ 𝑓 𝑑𝛼
𝑏

_𝑎
 ≤  ∫ 𝑓 𝑑𝛼

−𝑏

𝑎
 . 

Proof. We know that  

                       U(𝑝1,f ,𝛼)  ≥ 𝐿(𝑝, 𝑓, 𝛼)         𝑓𝑜𝑟 𝑎𝑙𝑙  𝑝1, 𝑝2𝜖 𝑃[𝑎, 𝑏].                (2) 

 We first keep ‘𝑝2’ fixed and vary  𝑝1, then (1) gives 

                           𝑔. 𝑙. 𝑏𝑝1𝜖𝑃[𝑎,𝑏] (𝑈(𝑝1, 𝑓, 𝛼))  ≥ 𝐿(𝑝2, 𝑓, 𝛼) 

implies that            ∫ 𝑓 𝑑𝛼 
−𝑏

𝑎
≥ 𝐿(𝑝2, 𝑓, 𝛼)                                                                        (3)  

Now we vary  𝑝2 , then (2) gives 

                 ∫ 𝑓 𝑑𝛼
−𝑏

𝑎
≥  𝑙. 𝑢. 𝑏𝑝2𝜖𝑃[𝑎,𝑏}(𝐿(𝑝2, 𝑓, 𝛼)) 
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This gives         ∫ 𝑓 𝑑𝛼 
−𝑏

𝑎
≥      ∫ 𝑓 𝑑𝛼

𝑏

_𝑎
 . 

This gives          ∫ 𝑓 𝑑𝛼
𝑏

_𝑎
 ≤ ∫ 𝑓 𝑑𝛼

−𝑏

𝑎
 .  

Hence the Theorem follows. 

Theorem 2.4.  If f ∈ 𝑅(𝛼), then 

            m [𝛼(𝑏) −  𝛼(𝑎)]   ≤     ∫ 𝑓 𝑑𝛼
𝑏

𝑎
   ≤    𝑀 [𝛼(𝑏) − 𝛼(𝑎)] . 

Proof . Let p be any partition of [a, b], then  

        U(p, f, 𝛼)     ≥    ∫ 𝑓 𝑑𝛼
−𝑏

𝑎
 ,                                    (4) 

and       L(p, f, 𝛼)    ≤    ∫ 𝑓 𝑑𝛼
𝑏

_𝑎
                                                               (5) 

Also                 ∫ 𝑓𝑑𝛼
𝑏

_𝑎
 = ∫ 𝑓𝑑𝛼

−𝑏

𝑎
  ,                                                             (6)   

 and 

  m[𝛼(𝑏) − 𝛼(𝑎)]   ≤    𝐿(𝑝, 𝑓, 𝛼)  ≤    𝑈(𝑝, 𝑓, 𝛼)  ≤   𝑀[𝛼(𝑏) − 𝛼(𝑎)]       (7) 

Thus, (4),   (5),   (6), and   (7) gives   

 [m [𝛼(𝑏) −  𝛼(𝑎)]  ≤  𝐿(𝑝, 𝑓, 𝛼) ≤ ∫ 𝑓𝑑𝛼
𝑏

𝑎
  ≤  U(p,f,𝛼) ≤  𝑀 [𝛼(𝑏) − 𝛼(𝑎)]. 

This implies that  

               [m [𝛼(𝑏) −  𝛼(𝑎)]  ≤  ∫ 𝑓𝑑𝛼
𝑏

𝑎
  ≤    𝑀 [𝛼(𝑏) − 𝛼(𝑎)]. 

Example 2.1: - If p* is refinement of p, then  

             U(p ∗ , f, α) − L(p ∗, f, α)  ≤ U (p , f, α) − L(p, f, α)      

Solution: Home Assignment. 

A Condition of Integrability.  

Theorem 2.5.  A function f  𝑅𝛼[𝑎, 𝑏], iff for every ϵ > 0 , there exists   

a partition 𝑝 of [𝑎, 𝑏], such that   
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                         U(𝑝 , 𝑓, 𝛼) − 𝐿(𝑝, 𝑓, 𝛼) <  𝜖. 

Proof. (Necessary part). Let f ∈  𝑅𝛼[𝑎, 𝑏] 

Therefore   ∫ 𝑓𝑑𝛼
−𝑏

𝑎
=    ∫ 𝑓𝑑𝛼

𝑏

_𝑎
   = ∫ 𝑓 𝑑𝛼

𝑏

𝑎
                                               (8)                                                                                                                                                          

Let 𝜖 be any number .Since   ∫ 𝑓𝑑𝛼
−𝑏

𝑎
 and ∫ 𝑓𝑑𝛼

𝑏

_𝑎
 are the infimum and 

supremum of set of upper sums and set of lower sums respectively. 

Therefore there exits partitions 𝑝1, 𝑝2 ∈  𝑃[𝑎, 𝑏], such that  

                             ∫ 𝑓𝑑𝛼
−𝑏

𝑎
+

2


  > U (𝑝1, f, 𝛼)                                            (9) 

and                     ∫ 𝑓𝑑𝛼
𝑏

_𝑎
−

2


 < L (𝑝2, f, 𝛼)                                             (10) 

Let p= 𝑝1 ∪ 𝑝2 , be common refinement of p1 and p2, then 

                  L(𝑝1,f,𝛼) ≥ 𝐿(𝑝2, 𝑓, 𝛼)                                                          (11) 

                 U(p, f, 𝛼) ≤   𝑈(𝑝1, 𝑓, 𝛼)                                                       (12) 

Now, (9), (10), (11), and (12) gives 

                  U (𝑝1 , f, 𝛼) <  ∫ 𝑓𝑑𝛼
−𝑏

𝑎
+

2


 

 and                 L (𝑝1, f, 𝛼) <  ∫ 𝑓 𝑑𝛼  
𝑏

_𝑎
−

2


  

Since p is the common refinement of the partitions 𝑜𝑓 𝑝1,𝑝2 , we have 

                     U (𝑝 , f, 𝛼) <  ∫ 𝑓𝑑𝛼
−𝑏

𝑎
+

2


 

 and            L (𝑝1, f, 𝛼) <  ∫ 𝑓 𝑑𝛼  
𝑏

_𝑎
−

2


    by (8). 
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This gives       U (p, f,𝛼) − 𝐿(𝑝, 𝑓, 𝛼)< 𝜖  . 

This follows necessary part. 

(Sufficient part). Let   𝜖 > 0, and 𝑝 be a partition , for which  

                            𝑈(𝑝, 𝑓, 𝛼) − 𝐿(𝑝, 𝑓, 𝛼) < 𝜖 . 

For any partition p we know that  

          𝐿(𝑝, 𝑓, 𝛼) ≤ ∫ 𝑓𝑑𝛼
𝑏

_𝑎
≤ ∫ 𝑓𝑑𝛼

−𝑏

𝑎
≤ 𝑈(𝑝, 𝑓, 𝛼) . 

This implies    ∫ 𝑓 𝑑𝛼
−𝑏

𝑎
−  ∫ 𝑓 𝑑𝛼

𝑏

_𝑎
 ≤ 𝑈(𝑝, 𝑓, 𝛼) − 𝐿(𝑝, 𝑓, 𝛼) < 𝜖 . 

This implies that    

                 ∫ 𝑓𝑑𝛼
−𝑏

𝑎
−  ∫ 𝑓𝑑𝛼

𝑏

_𝑎
< 𝜖                                                       (13) 

Since      ∫ 𝑓𝑑𝛼
−𝑏

𝑎
−  ∫ 𝑓𝑑𝛼

𝑏

_𝑎
≥ 0 and 𝜖 > 0 , be any number. 

Therefore from   (13)  , we must have  

            ∫ 𝑓𝑑𝛼
−𝑏

𝑎
=  ∫ 𝑓𝑑𝛼

𝑏

_𝑎
 . 

This gives      𝑓 ∈  𝑅𝛼[𝑎, 𝑏]. 

Thus the sufficient part follows  and  completes the proof of  the result. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟐. 𝟔.  If 𝑓1 𝜖 𝑅𝛼  and  𝑓2 𝜖 𝑅𝛼  over [𝑎, 𝑏], then  

       𝑓1 + 𝑓2𝜖𝑅𝛼[𝑎, 𝑏] and ∫ ( 𝑓1 + 𝑓2)𝑑𝛼
𝑏

𝑎
= ∫ 𝑓1 𝑑𝛼

𝑏

𝑎
+ ∫ 𝑓2 𝑑𝛼

𝑏

𝑎
 . 

 Proof.  Let   f= 𝑓1 + 𝑓2. 

Since 𝑓1 and 𝑓2  are bounded. 

Therefore 𝑓1 + 𝑓2 = f is also bounded on [a. b] 

If P= {a = 𝑥0,𝑥1,𝑥2,….𝑥𝑛= b} be any partition of [a, b]  and let  
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𝑚𝑖
′ ,𝑀𝑖

′ , 𝑚𝑖
" , 𝑀𝑖

" and  𝑚𝑖, 𝑀𝑖 are the infimums and supremums of 𝑓1, 

𝑓2 and f respectively on ∆𝑥𝑖  , then 

𝑚𝑖
′ + 𝑚𝑖

" ≤ 𝑚𝑖 ≤ 𝑀𝑖 ≤ 𝑀𝑖′ + 𝑀𝑖
".                                              

Multiplying by ∆𝛼𝑖 , we get 

𝑚𝑖
′ ∆𝛼𝑖 ≤ 𝑚𝑖

′′ ∆𝛼𝑖  ≤  𝑚𝑖  ∆𝛼𝑖≤ 𝑀𝑖  ∆𝛼𝑖≤ 𝑀𝑖
′ ∆𝛼𝑖+ 𝑀𝑖

′′ ∆𝛼𝑖   .                 

This gives  

 ∑ 𝑚𝑖
′ ∆𝛼𝑖

𝑛
𝑖=1 +∑ 𝑚𝑖

′′ ∆𝛼𝑖 
𝑛
𝑖=1 ≤ ∑ 𝑚𝑖  ∆𝛼𝑖

𝑛
𝑖=1 ≤ 

                                   ∑  𝑀𝑖  ∆𝛼𝑖
𝑛
𝑖=1 ≤ ∑ 𝑀𝑖

′ ∆𝛼𝑖
𝑛
𝑖=1  +∑ 𝑀𝑖

′′ ∆𝛼𝑖
𝑛
𝑖=1  . 

This implies  

   L(p,𝑓1,𝛼) + 𝐿(𝑝, 𝑓2, 𝛼) ≤ L(p, f,𝛼) ≤ 

                              ≤   𝑈(𝑝, 𝑓, 𝛼) ) ≤ 𝑈(𝑝, 𝑓1, 𝛼)+) ≤ 𝑈(𝑝, 𝑓2, 𝛼               (14) 

This implies that  

      𝑈(𝑝, 𝑓, 𝛼)  − L(p,f,𝛼) ≤{ 𝑈(𝑝, 𝑓1, 𝛼)  + 𝑈(p,𝑓2,𝛼)}-{L(𝑝, 𝑓1, 𝛼)  + 𝐿(p,𝑓2,𝛼)}. 

This implies  

 𝑈(𝑝, 𝑓, 𝛼)  − L(p,f,𝛼)  ≤ 𝑈(𝑝, 𝑓1, 𝛼) -L(𝑝, 𝑓1, 𝛼) +  𝑈(p,𝑓2,𝛼) -L(p,𝑓2,𝛼)     (15) 

                                                                                                                        ∀𝑝 ∈ 𝑃[𝑎, 𝑏] 

Since 𝑓1 ∈  𝑅𝛼 and 𝑓2  ∈  𝑅𝛼 over [𝑎, 𝑏]. 

Therefore every 𝜖 > 0 , there exist partition 𝑝1, 𝑝2 , such that  

                              𝑈(𝑝1, 𝑓1, 𝛼) −  𝐿(𝑝1, 𝑓1, 𝛼) < 𝜖/2 , 

and                   𝑈(𝑝2, 𝑓2, 𝛼) − 𝐿 (𝑝2, 𝑓2, 𝛼) < 𝜖/2 . 

Let  𝑝 = 𝑝1 ∪ 𝑝2, then 

         𝑈(𝑝, 𝑓1, 𝛼) −  𝐿(𝑝, 𝑓1, 𝛼) < 𝜖/2 ,  
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and     𝑈(𝑝, 𝑓2, 𝛼) −  𝐿(𝑝, 𝑓2, 𝛼) < 𝜖/2 

This gives   𝑈(𝑝, 𝑓1, 𝛼) −  𝐿(𝑝, 𝑓1, 𝛼) +  𝑈(𝑝, 𝑓2, 𝛼) −  𝐿(𝑝, 𝑓2, 𝛼) < 𝜖 . 

Therefore (15) gives  𝑈(𝑝, 𝑓, 𝛼) − L (p,f,𝛼) < 𝜖 . 

Thus ∃ partition p of [a, b], such that 

               𝑈(𝑝, 𝑓, 𝛼) − L (p,f,𝛼) < 𝜖 . 

Therefore  𝑓 ∈  𝑅𝛼[𝑎, 𝑏]. 

Now we have to prove that  

∫ 𝑓𝑑𝛼
𝑏

𝑎

=  ∫ 𝑓1𝑑𝛼
𝑏

𝑎

+ ∫ 𝑓2𝑑𝛼
𝑏

𝑎

.                                    

Since the upper integral is the infimum of upper sums, therefore ∃ partition  

𝑝1, 𝑝2 , such that  

                        

b

a

dffpU
2

,,
11


     

and                                  𝑈(𝑝, 𝑓2, 𝛼) < ∫ 𝑓2𝑑𝛼
𝑏

𝑎
+

𝜖

2
  .  

  For such partition p, 

           ∫ 𝑓𝑑𝛼
𝑏

𝑎
≤  𝑈(𝑝, 𝑓, 𝛼) ≤ 𝑈(𝑝, 𝑓1, 𝛼) + 𝑈(𝑝, 𝑓2, 𝛼)  by                        (16) 

                                                   ≤ ∫ 𝑓1𝑑𝛼
𝑏

𝑎
+∫ 𝑓2𝑑𝛼

𝑏

𝑎
+ 𝜖 . 

       ∫ 𝑓𝑑𝛼
𝑏

𝑎
≤ ∫ 𝑓1𝑑𝛼

𝑏

𝑎
+ ∫ 𝑓2𝑑𝛼

𝑏

𝑎
+ 𝜖                  ∀ 𝜖 > 0 . 

Letting 𝜖 → 0 we get  

         ∫ 𝑓𝑑𝛼
𝑏

𝑎
≤ ∫ 𝑓1𝑑𝛼

𝑏

𝑎
+ ∫ 𝑓2𝑑𝛼

𝑏

𝑎
                                                             (17)  

 

Simillarly by considering lower integrals as supremum of lower sums , we get  
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            ∫ 𝑓𝑑𝛼
𝑏

𝑎
≥ ∫ 𝑓1𝑑𝛼

𝑏

𝑎
+ ∫ 𝑓2𝑑𝛼

𝑏

𝑎
                                                    (18) 

From (17) and (18), we get 

           ∫ 𝑓𝑑𝛼
𝑏

𝑎
= ∫ 𝑓1𝑑𝛼

𝑏

𝑎
+ ∫ 𝑓2𝑑𝛼

𝑏

𝑎
 . 

Hence the theorem follows. 

Theorem 2.7.  If   𝑓1, 𝑓2  ∈  𝑅𝛼[𝑎, 𝑏] , then  𝑓 = 𝑓1 − 𝑓2  ∈  𝑅𝛼[𝑎, 𝑏], and 

         ∫ 𝑓𝑑𝛼
𝑏

𝑎
= ∫ 𝑓1𝑑𝛼

𝑏

𝑎
− ∫ 𝑓2𝑑𝛼

𝑏

𝑎
 . 

Proof. Let   𝑝 = {𝑎 =  𝑥0, 𝑥1, 𝑥2, … … … … . . , 𝑥𝑛 = 𝑏}be any partition of [𝑎, 𝑏], 

 𝑎𝑛𝑑  𝑚𝑖
′, 𝑀𝑖

′, 𝑚𝑖
′′ , 𝑀𝑖

′′    and 𝑚𝑖, 𝑀𝑖  are the infimum and supremum    

of  𝑓1, 𝑓2 and f respectively. 

Then clearly bounds of (-𝑓2) are  – 𝑀𝑖
′′   and −𝑚𝑖

′′ 

Therefore    𝑚𝑖
′′-  𝑀𝑖

′′  ≤   𝑚𝑖  ≤ 𝑀𝑖 ≤ 𝑀𝑖
′ − 𝑚𝑖

′′ .  

Multiplying by ∆𝛼𝑖  , we get  

  ∆𝛼𝑖 𝑚𝑖
′+ ∆𝛼𝑖 (−𝑀𝑖

′′)  ≤ ∆𝛼𝑖𝑚𝑖 ≤ ∆𝛼𝑖𝑀𝑖 ≤ ∆𝛼𝑖 𝑀𝑖
′ + (−𝑚𝑖

′′) ∆𝛼𝑖            

                                                                            for i= 1,2,…n. 

This implies that 

   ∑ ∆𝛼𝑖  𝑚𝑖
′𝑛

𝑖=1 − ∑ ∆𝛼𝑖  (𝑀𝑖
′′)𝑛

𝑖=1 ≤ ∑ ∆𝛼𝑖𝑚𝑖
𝑛
𝑖=1 ≤ 

                                                 ∑ ∆𝛼𝑖𝑀𝑖
𝑛
𝑖=1 ≤ ∑ ∆𝛼𝑖  𝑀𝑖

′𝑛
𝑖=1 − ∑ 𝑚𝑖

′′ ∆𝛼𝑖
𝑛
𝑖=1  .  

Therefore 𝐿(𝑝, 𝑓1 , 𝛼) − 𝑈(𝑝, 𝑓2 , 𝛼) ≤ 𝐿(𝑝, 𝑓, 𝛼) ≤ 𝑈(𝑝, 𝑓, 𝛼) ≤ 

                                                                                          𝑈(𝑝, 𝑓1 , 𝛼)-L(p, 𝑓2,𝛼)              (19) 

𝑈(𝑝, 𝑓, 𝛼) − 𝐿(𝑝, 𝑓, 𝛼) ≤ 𝑈(𝑝, 𝑓1 , 𝛼) − 𝐿(𝑝, 𝑓2 , 𝛼) − 𝐿(𝑝, 𝑓1 , 𝛼) + 𝑈(𝑝, 𝑓2 , 𝛼). 

This gives    𝑈(𝑝, 𝑓, 𝛼) − 𝐿(𝑝, 𝑓, 𝛼) ≤ (𝑝, 𝑓1 , 𝛼) − 𝐿(𝑝, 𝑓1 , 𝛼) + 
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                                                                                               𝑈(𝑝, 𝑓2 , 𝛼) − (𝑝, 𝑓2 , 𝛼)             (20) 

Let 𝜖 > 0 , 𝑡ℎ𝑒𝑛 ∃ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑝1 and 𝑝2 of [𝑎, 𝑏], such that 

                      𝑈(𝑝1, 𝑓1, 𝛼) − 𝐿(𝑝1, 𝑓1, 𝛼)   <  𝜖/2  , 

and             

                       𝑈(𝑝2, 𝑓2, 𝛼) − 𝐿(𝑝2, 𝑓2, 𝛼)   <  𝜖/2 . 

Let                 𝑝 = 𝑝1 ∪ 𝑝2, then  

                𝑈(𝑝, 𝑓1, 𝛼) − 𝐿(𝑝, 𝑓1, 𝛼)   <  𝜖/2 , 

  and   

               𝑈(𝑝, 𝑓2, 𝛼) − 𝐿(𝑝, 𝑓2, 𝛼)   <  𝜖/2 . 

This gives  

𝑈(𝑝, 𝑓1, 𝛼) − 𝐿(𝑝, 𝑓1, 𝛼) + 𝑈(𝑝, 𝑓2, 𝛼) − 𝐿(𝑝, 𝑓2, 𝛼) <∈ . 

Therefore 

                    𝑈(𝑝, 𝑓, 𝛼) − 𝐿(𝑝, 𝑓, 𝛼)   < ∈. 

This shows that  𝑓𝜖𝑅𝛼[𝑎, 𝑏]. 

Now we will show that  

                 ∫ 𝑓𝑑𝛼
𝑏

𝑎
=∫ 𝑓1𝑑𝛼

𝑏

𝑎
 – ∫ 𝑓2𝑑𝛼

𝑏

𝑎
. 

Since upper integrals and lower integrals are infimum and suprimum . 

Therefore For any 𝜖 > 0  , 𝑡ℎ𝑒𝑟𝑒 exist partition 𝑝1 and 𝑝2 , such that  

                 ∫ 𝑓1𝑑𝛼
𝑏

𝑎
> 𝑈(𝑝1, 𝑓1, 𝛼) −

𝜖

2
 . 

and                ∫ 𝑓2𝑑𝛼
𝑏

𝑎
 < 𝑈(𝑝2, 𝑓2, 𝛼) −

𝜖

2
  .  

If             𝑃 = 𝑝1 ∪ 𝑝2, then  
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               𝑈(𝑝 , 𝑓1 , 𝛼) <  ∫ 𝑓1𝑑𝛼
𝑏

𝑎
+

𝜖

2
 . 

and             𝐿(𝑝, 𝑓2, 𝛼) > ∫ 𝑓2𝑑𝛼
𝑏

𝑎
−

𝜖

2
                                                         (21)  

For such partition P, we have              

           ∫ 𝑓𝑑𝛼
𝑏

𝑎
≤ 𝑈(𝑝, 𝑓, 𝛼) ≤ 𝑈(𝑝, 𝑓1, 𝛼) − 𝐿(𝑝, 𝑓2, 𝛼)          by  (19)  

                                                         < ∫ 𝑓1𝑑𝛼
𝑏

𝑎
− ∫ 𝑓2𝑑𝛼

𝑏

𝑎
 +ϵ           by  (21). 

This implies  

               ∫ 𝑓𝑑𝛼
𝑏

𝑎
< ∫ 𝑓1𝑑𝛼

𝑏

𝑎
- ∫ 𝑓2𝑑𝛼

𝑏

𝑎
 +𝜖 . 

letting 𝜖 → 0, we get       ∫ 𝑓𝑑𝛼
𝑏

𝑎
≤ ∫ 𝑓1𝑑𝛼

𝑏

𝑎
- ∫ 𝑓2𝑑𝛼

𝑏

𝑎
                (22) 

Proceeding with (−𝑓1) and (-𝑓2) in place of𝑓1,𝑓2 , we get  

                 − ∫ 𝑓𝑑𝛼
𝑏

𝑎
≤ − ∫ 𝑓1𝑑𝛼

𝑏

𝑎
 + ∫ 𝑓2𝑑𝛼

𝑏

𝑎
 

This implies that  

                    ∫ 𝑓𝑑𝛼
𝑏

𝑎
 ≥  ∫ 𝑓1𝑑𝛼

𝑏

𝑎
− ∫ 𝑓2𝑑𝛼

𝑏

𝑎
  

This gives    

                            ∫ 𝑓𝑑𝛼
𝑏

𝑎
 ≥  ∫ 𝑓1𝑑𝛼

𝑏

𝑎
− ∫ 𝑓2𝑑𝛼

𝑏

𝑎
                    (23) 

From (22) and (23), we get  

                          ∫ 𝑓𝑑𝛼
𝑏

𝑎
=∫ 𝑓1𝑑𝛼

𝑏

𝑎
 – ∫ 𝑓2𝑑𝛼

𝑏

𝑎
. 

Theorem 2.8.  If   𝑓 ∈  𝑅𝛼 [𝑎, 𝑏] , then  𝑓 ∈  𝑅𝛼[𝑎, 𝑏] and 𝑓 𝜖 𝑅𝛼[𝑐, 𝑏]    

∀  c ∈ [𝑎, 𝑏] and conversely. Also in either case     

∫ 𝑓𝑑𝛼
𝑏

𝑎

=  ∫ 𝑓𝑑𝛼
𝑐

𝑎

+ ∫ 𝑓𝑑𝛼  .
𝑏

𝑐

 

Proof. Suppose that  𝑓 𝜖𝑅𝛼[𝑎, 𝑏]. 
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Therefore for any 휀 > 0 , ∃ 𝑃 of [𝑎, 𝑏], such that  

                 𝑈(𝑝, 𝑓, 𝛼) − 𝐿(𝑝, 𝑓, 𝛼) < 휀. 

Let             p* = P ∪ {𝑐} 

Then,     U(p*, f, 𝛼) − 𝐿(p*,f,𝛼) ≤ 𝑈(𝑝, 𝑓, 𝛼) − 𝐿(𝑝, 𝑓, 𝛼) <  휀 . 

Let 𝑝1 and  𝑝2 be the set of points of p* between [a, c] and [c, b] 

respectively. Then  

               U (p*, f, 𝛼)  = 𝑈(𝑝1,f,𝛼) + 𝑈(𝑝2, 𝑓, 𝛼) , 

 and         L(p*, f, 𝛼) = 𝐿(𝑝1,f,𝛼)+ 𝐿(𝑝2,f,𝛼) . 

Also         𝑈(𝑝1, 𝑓, 𝛼) − 𝐿(𝑝1, 𝑓, 𝛼) ≥ 0, 

and         U(𝑝2, f, 𝛼) − 𝐿(𝑝2,f,𝛼) ≥ 0. 

We have 

  U(𝑝1, f, 𝛼) +U(𝑝2, f, 𝛼) −  𝐿(𝑝1,f,𝛼) − 𝐿(𝑝2,f,𝛼) 

                                                           = U(p*, f, 𝛼) − 𝐿(p*,f,𝛼) < ε 

Therefore, 

  [𝑈(𝑝1, 𝑓, 𝛼) − 𝐿(𝑝1, 𝑓, 𝛼)] +  [ 𝑈(𝑝2, 𝑓, 𝛼) − 𝐿(𝑝2, 𝑓, 𝛼)] < 휀                      

Since each bracket on L.H.S is non negative .  

Therefore,     U (𝑝1, f, 𝛼) − 𝐿(𝑝1,f,𝛼) < 
𝜖

2
  ,  

and              𝑈(𝑝2, 𝑓, 𝛼) − 𝐿(𝑝2, 𝑓, 𝛼)] <  
𝜖

2
 

where 𝑝1 ∈ 𝑃[𝑎, 𝑐]  and  𝑝2 ∈ 𝑃[𝑐, 𝑏]. 

Therefore, 𝑓 ∈ 𝑅𝛼 [𝑎, 𝑐]  and 𝑓 ∈ 𝑅𝛼 [𝑐, 𝑏]  ;      𝑎 ≤ 𝑐 ≤ 𝑏. 

Conversely, suppose 𝑓 ∈ 𝑅𝛼 [𝑎, 𝑐] and 𝑓 ∈ 𝑅𝛼 [𝑐, 𝑏] ;    𝑎 ≤ 𝑐 ≤ 𝑏. 

Therefore for  𝜖 >  0, we can find partitions 𝑝1,  𝑝2 of [𝑎, 𝑏], [𝑎. 𝑐] respectively,  
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such that  

                      𝑈(𝑝1, 𝑓, 𝛼) − 𝐿(𝑝1, 𝑓, 𝛼)  <  
𝜖

2
 

 and              𝑈(𝑝2, 𝑓, 𝛼) − 𝐿(𝑝2, 𝑓, 𝛼) <
𝜖

2
 . 

Let    p* = 𝑝1 ∪ 𝑝2 ,   then clearly p* is a partition of [a, b]. 

Also,      U(p*, f, 𝛼) − 𝐿(p*,f,𝛼)= [U(𝑝1, f, 𝛼) +  𝑈(𝑝2, 𝑓, 𝛼)] − 

                                                                      [ 𝐿(𝑝1,f,𝛼) + 𝐿(𝑝2, 𝑓, 𝛼)] 

                                   = U(𝑝1, f, 𝛼) − 𝐿(𝑝1,f,𝛼) +  𝑈(𝑝2, 𝑓, 𝛼) − (𝑝2, 𝑓, 𝛼) 

                                   <  
𝜖

2
 + 

𝜖

2
 = 𝜖 

Thus  ∃  partition 𝑝 ∗ of [𝑎, 𝑏] , such that  

                            𝑈(𝑝 ∗, 𝑓, 𝛼) − 𝐿(𝑝 ∗, 𝑓, 𝛼) < 𝜖 

Therefore,   𝑓 ∈   𝑅𝛼[𝑎 , 𝑏] . 

We know that for any two function 𝑓1 and 𝑓2. 

If    f = 𝑓1+ 𝑓2 , then     

             𝑖𝑛𝑓 𝑓 ≥ 𝑖𝑛𝑓 𝑓1 + 𝑖𝑛𝑓 𝑓2 , 

and        𝑆𝑢𝑝 𝑓 ≤  𝑠𝑢𝑝 𝑓1  +  𝑠𝑢𝑝 𝑓2.  

Now for any partition 𝑝1, 𝑝2 of [a,c],[c, b] respectively, if p*= 𝑝1 ∪ 𝑝2 , 

then 

              𝑈(𝑝 ∗, 𝑓, 𝛼) = 𝑈(𝑝1, 𝑓, 𝛼) +  𝑈(𝑝2, 𝑓, 𝛼) 

           Inf { 𝑈(𝑝 ∗, 𝑓, 𝛼)} ≥ 𝑖𝑛𝑓{𝑈(𝑝1, 𝑓, 𝛼)} + 𝑖𝑛𝑓 { 𝑈(𝑝2, 𝑓, 𝛼)} 

Therefore      ∫ 𝑓𝑑𝛼
−𝑏

𝑎
  ≥   ∫ 𝑓𝑑𝛼

−𝑐

𝑎
  +   ∫ 𝑓𝑑𝛼

−𝑏

𝑐
  

                 ∫ 𝑓𝑑𝛼
𝑏

𝑎
 ≥ ∫ 𝑓𝑑𝛼

𝑐

𝑎
+ ∫ 𝑓𝑑𝛼

𝑏

𝑐
                                                   (24)  
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Preceeding with (−𝑓)in place of 𝑓, we get 

                        ∫ 𝑓𝑑𝛼
𝑏

𝑎

 ≤  ∫ 𝑓𝑑𝛼
𝑐

𝑎

+ ∫ 𝑓𝑑𝛼  
𝑏

𝑐

                                                 (25) 

From (24) and (25), we get 

     ∫ 𝑓𝑑𝛼
𝑏

𝑎
=  ∫ 𝑓𝑑𝛼

𝑐

𝑎
+ ∫ 𝑓𝑑𝛼

𝑏

𝑐
 . 

Theorem 2.9. The oscillation of a bounded function f on an interval 

[a, b] is supremum of the set {|𝑓(𝑥1) − (𝑥2)| , 𝑥1, 𝑥2 ∈ [𝑎, 𝑏]} of numbers. 

Proof. Let M, m be the bounds of f on [𝑎, 𝑏] . 

Now     m ≤ 𝑓(𝑥1), 𝑓(𝑥2) ≤ 𝑀;     ∀ 𝑥1, 𝑥2 ∈ [𝑎, 𝑏]. 

This implies that 

            |𝑓(𝑥1) − 𝑓(𝑥1)|  ≤ 𝑀 − 𝑚           ∀ 𝑥1 , 𝑥2 ∈ [𝑎, 𝑏]. 

Therefore, 𝑀 − 𝑚 is an upper bound of the set  { |𝑓(𝑥1) − 𝑓(𝑥2)|:   𝑥1, 𝑥2 ∈ [𝑎, 𝑏]}. 

Let 𝜖 > 0 𝑏𝑒 𝑎𝑛𝑦 𝑛𝑢𝑚𝑏𝑒𝑟.Since M is supremum of f, therefore there exists 

𝑥′ ∈ [𝑎, 𝑏], such that 

               𝑓(𝑥′) > 𝑀 −
𝜖

2
 . 

Simillarly ∃ 𝑥" ∈ [𝑎, 𝑏], such that  

               𝑓(𝑥") < 𝑚 +
𝜖

2
   . 

This gives    𝑓(𝑥′) – 𝑓(𝑥′′)  >  𝑀 − 𝑚 − 𝜖 . 

               |𝑓(𝑥′) − 𝑓(𝑥")| > 𝑀 − 𝑚 − 𝜖 . 

Thus , ∃ a no. in the set    {|𝑓(𝑥′) − 𝑓(𝑥")|:  𝑥1,𝑥2 ∈ [𝑎, 𝑏]} , such that 

          |𝑓(𝑥′) − 𝑓(𝑥")| > 𝑀 − 𝑚 − 𝜖   ∀ 𝜖 > 0 . 

This shows that 𝑀 − 𝑚 −  𝜖  is not upper bound of the above set ∀ 𝜖 > 0. 
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This gives  𝑀 − 𝑚 is l.u.b. of the above set.  

That is,   𝑀 − 𝑚 =  𝑠𝑢𝑝 {|𝑓(𝑥1) − 𝑓(𝑥2)|: 𝑥1,𝑥2 ∈ [𝑎, 𝑏]}. 

Theorem 2.10.  If 𝑓1, 𝑓2 ∈ 𝑅𝛼[a, b] , then  𝑓1𝑓2 ∈ 𝑅𝛼[a, b]. 

Proof. Since 𝑓1 and 𝑓2  are bounded on [a, b], therefore 𝑓1𝑓2  is also 

bounded on [a, b]. 

Let  𝑝 = {𝑎 =  𝑥0, 𝑥1, 𝑥2, … … … … . . , 𝑥𝑛 = 𝑏} be any partition of [a, b]. 

Suppose  𝑚𝑖
′, 𝑀𝑖

′, 𝑚𝑖
′′ , 𝑀𝑖

′′    and 𝑚𝑖, 𝑀𝑖  are the infimum and supremum 

of 𝑓1, 𝑓2 and f respectively in ∆𝑥𝑖  .We have for all 𝑥1 ,𝑥2 ∈ ∆𝑥𝑖   

    𝑓1 𝑓2 (x2) - 𝑓1 𝑓2 (x1) = 𝑓1 (x2) 𝑓2 (x2) -𝑓1 (x1) 𝑓2 (x1)   

              = 𝑓1(x2) 𝑓2 (x2)- 𝑓1 (x1) 𝑓2 (x1)+ 𝑓1 (x1) 𝑓2 (x2)-𝑓1 (x1) 𝑓2 (x1)   

              = 𝑓2(x2)( 𝑓1(x2)-- 𝑓1(x1))+ 𝑓1 (x1) (𝑓2 (x2) -𝑓2 (x1)).   

This implies    |(𝑓1𝑓2)(𝑥2) − (𝑓1𝑓2)(𝑥2)| ≤ |𝑓2(𝑥2)||𝑓1(𝑥2) − 𝑓1(𝑥1)| + 

                                                                                                         |𝑓1(𝑥1)||𝑓2(𝑥2) − 𝑓2(𝑥1)| 

                                                                                              ≤ 𝐾[𝑀𝑖
′ − 𝑚𝑖

′ ] + 𝐾[𝑀𝑖-𝑚𝑖] 

 where        |𝑓1(𝑥)| ≤ 𝐾 𝑎𝑛𝑑 |𝑓2(𝑥)| ≤ K   ∀ 𝑥 ∈ [𝑎, 𝑏]. 

This gives  

                    𝑀𝑖-𝑚𝑖  ≤ 𝐾[𝑀𝑖
′ − 𝑚𝑖

′] + 𝐾[𝑀𝑖
′′ − 𝑚𝑖

′′]                                  (26) 

Now let ϵ > 0 be any number. 

Since 𝑓1, 𝑓2are integrable, therefore ∃ partitions 𝑝1, 𝑝2, such that  

                         𝑈(𝑝1, 𝑓1, 𝛼) − 𝐿(𝑝1, 𝑓1, 𝛼) <
𝜖

2𝑘
                                       (27) 

and           𝑈(𝑝2, 𝑓2, 𝛼) − 𝐿(𝑝2, 𝑓2, 𝛼) <
𝜖

2𝑘
                                                            (28) 

Let             𝑃 =  𝑝1 ∪ 𝑝2, then 
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                𝑈(𝑝, 𝑓1, 𝛼) − 𝐿(𝑝, 𝑓1, 𝛼) < 𝜖/2k, 

and          

                 𝑈(𝑝, 𝑓2, 𝛼) − 𝐿(𝑝, 𝑓2, 𝛼) <  𝜖/2k. 

For this partition, we must have 

               𝑀𝑖-𝑚𝑖  ≤ 𝑘[𝑀𝑖
′ − 𝑚𝑖

′] + 𝑘[𝑀𝑖
′′ − 𝑚𝑖

′′]        by (26) 

This gives 

  𝑈(𝑝, 𝑓1𝑓2, 𝛼) − 𝐿(𝑝, 𝑓1𝑓2, 𝛼) ≤ 

                                                         𝑘[𝑈(𝑝, 𝑓1, 𝛼) − 𝐿(𝑝, 𝑓1, 𝛼)] + 𝑘[𝑈(𝑝, 𝑓2, 𝛼) − 𝐿(𝑝, 𝑓2, 𝛼)] 

                                    <   𝑘
𝜖

2𝑘
+ 𝑘

𝜖

2𝑘
    by (27) and (28). 

This gives  

                           𝑈(𝑝, 𝑓, 𝛼) − 𝐿(𝑝, 𝑓, 𝛼) < 𝜖 . 

This shows that   f = 𝑓1𝑓2 is also integrable with respect to α over [𝑎, 𝑏]. 

Theorem 2.11. If 𝑓1 and 𝑓2 are two bounded and integrable functions 

with respect to α over [𝑎, b]and ∃ a number λ > 0 , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑓2(𝑥)| ≥ 𝜆, ∀𝑥 ∈

[𝑎, 𝑏], then  
𝑓1

𝑓2
 is also  integrable with respect to α over [𝑎, 𝑏]. 

Proof.  Since 𝑓1, 𝑓2 are bounded and |𝑓2(𝑥)| ≥ 𝜆,   ∀𝑥 ∈ [𝑎, 𝑏]. 

Also ∃ 𝐾, such that |𝑓1(𝑥)| ≤ 𝐾, ∀ 𝑥 ∈ [𝑎, 𝑏]. 

Therefore,        |
𝑓1(𝑥)

𝑓2(𝑥)
| = |

𝑓1(𝑥)

𝑓2(𝑥)
| ≤

𝐾

𝜆
 ;   ∀ 𝑥 ∈ [𝑎, 𝑏] . 

Thus,   𝑓1/𝑓2 is bounded function on [a, b]. 

Let 𝜖 > 0 𝑏𝑒 𝑎𝑛𝑦 𝑛umber, therefore ∃ partitions 𝑝1, 𝑝2 of [𝑎, 𝑏], 𝑠uch that     

                        𝑈(𝑝1, 𝑓1, 𝛼) − 𝐿(𝑝1, 𝑓1, 𝛼) < 𝜖𝜆2/2K. 
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and         𝑈(𝑝2, 𝑓2, 𝛼) − 𝐿(𝑝2, 𝑓2, 𝛼) < 𝜖𝜆2/2K. 

Let P = 𝑝1 ∪ 𝑝2, then 

                      𝑈(𝑝, 𝑓1, 𝛼) − 𝐿(𝑝, 𝑓1, 𝛼) < 𝜖𝜆2/2K                                 (29) 

and             𝑈(𝑝, 𝑓2, 𝛼) − 𝐿(𝑝, 𝑓2, 𝛼) < 𝜖𝜆2/2K                                 (30) 

Let p = {a = 𝑥0, 𝑥1, 𝑥2…𝑥𝑛 = b} be any partition of [a, b] . 

Suppose   𝑚𝑖
′, 𝑀𝑖

′, 𝑚𝑖
′′ , 𝑀𝑖

′′    and 𝑚𝑖, 𝑀𝑖  are the infimum and supremum 

of 𝑓1, 𝑓2 and f respectively,we have  

      |(
𝑓1

𝑓2
) (𝑥2) − (

𝑓1

𝑓2
) (𝑥1)| = |

𝑓1(𝑥2)

𝑓2(𝑥2)
−

𝑓1(𝑥1)

𝑓2(𝑥1)
|  

                                 =    |
𝑓1(𝑥2)𝑓2(𝑥1)−𝑓1(𝑥1)𝑓2(𝑥2)

𝑓2(𝑥2).𝑓2(𝑥1)
| 

                                 ≤
1

𝜆2
  [|f1(x2)f2(x1) − f1(x1)f2(x2)|]. 

This implies that 

   |(
𝑓1

𝑓2
) (𝑥2) − (

𝑓1

𝑓2
) (𝑥1)| ≤

1

𝜆2
[|

𝑓1(𝑥2)𝑓2(𝑥1) − 𝑓2(𝑥1)𝑓1(𝑥1) +

𝑓2(𝑥1)𝑓1(𝑥1) − 𝑓1(𝑥1)𝑓2(𝑥2)
|] 

                                               ≤
1

𝜆2
[|𝑓1(𝑥1)||𝑓1(𝑥2) − 𝑓1(𝑥1)| + |𝑓1(𝑥1)||𝑓2(𝑥1) − 𝑓2(𝑥2)|] 

≤
1

𝜆2
[𝐾{𝑀𝑖

′ − 𝑚𝑖
′ } + {𝑀𝑖

′′-𝑚𝑖
′′}] 

                              =  
𝐾

𝜆2
 [{𝑀𝑖

′ − 𝑚𝑖
′ } + {𝑀𝑖

′′-𝑚𝑖
′′}]. 

This implies          𝑀𝑖 − 𝑚𝑖 ≤
𝐾

𝜆2
[{𝑀𝑖

′ − 𝑚𝑖
′} + {𝑀𝑖

′′-𝑚𝑖
′′}] 

This gives  

  U(p, 
𝑓1

𝑓2
 , 𝛼) − 𝐿(𝑝,

𝑓1

𝑓2
, 𝛼)  ≤

𝐾

𝜆2
[U(p, 𝑓1,𝛼) + 𝐿(𝑝, 𝑓1, 𝛼) + 𝑈(𝑝, 𝑓2, 𝛼) + 𝐿(𝑝, 𝑓2, 𝛼)] 

                          <  
𝐾

𝜆2
[

𝜆2𝜖

2𝐾
+

𝜆2𝜖

2𝐾
] = 𝜖         by (29)and (30). 
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Therefore, U (p, 
𝑓1

𝑓2
 , 𝛼) − 𝐿 (𝑝,

𝑓1

𝑓2
, 𝛼) <  𝜖 . 

Hence     
 𝑓1

𝑓2
 ∈ 𝑅𝛼[a, b]. 

Theorem 2.12. If 𝑓 ∈ 𝑅𝛼[a, b], then  |f| ∈ Rα[a, b] and  

                     |∫ 𝑓𝑑𝛼
𝑏

𝑎
| ≤ ∫ |𝑓|

𝑏

𝑎
𝑑𝛼 

Proof. We know that if 𝑓 ≤ 𝑔 on [𝑎, 𝑏], then                                                                      

                    ∫ 𝑓𝑑𝛼
𝑏

𝑎
≤ ∫ 𝑔𝑑𝛼

𝑏

𝑎
                                              (31) 

Since f is bounded , therefore ∃ 𝐾 > 0 , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

                |𝑓(𝑥)| ≤ 𝐾,       ∀ 𝑥 ∈ [𝑎, 𝑏]. 

Therefore the function |𝑓| is also bounded. 

Again, since f is integrable, therefore for any 𝜖 > 0 , ∃ partition 𝑃 of [𝑎, 𝑏], 

such that 

                 𝑈(𝑝, 𝑓, 𝛼) − 𝐿(𝑝, 𝑓, 𝛼) < 𝜖                                                           (32) 

Let 𝑀𝑖
′ 𝑚𝑖

′ and 𝑀𝑖 ,𝑚𝑖 be the bounds of f and |𝑓| in ∆𝑥𝑖 ,we have ∀ 𝑥1, 𝑥2 ∈ ∆𝑥𝑖 

                  ||𝑓(𝑥2)| − |𝑓(𝑥1)|| ≤ |𝑓(𝑥2) − 𝑓(𝑥1)|  ≤ 𝑀𝑖
′- 𝑚𝑖

′ . 

This implies that   𝑀𝑖
′- 𝑚𝑖

′ ≤ 𝑀′
𝑖 − 𝑚′

𝑖 

This implies for any partition P of [a, b];  

          U (p,|𝑓|, 𝛼)-L (p,|𝑓|, 𝛼)≤ 𝑈(𝑝, 𝑓, 𝛼) − 𝐿(𝑝, 𝑓, 𝛼) 

                                     <  𝜖    by (32). 

Hence   |𝑓| ∈  𝑅𝛼[a, b]. 

Also,   𝑓(𝑥) ≤ |𝑓(𝑥)|  𝑎𝑛𝑑 – 𝑓(𝑥) ≤  |𝑓(𝑥)|    ∀ 𝑥 ∈ [𝑎, 𝑏]  .                                

Therefore by (1), we have 
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             ∫ 𝑓(𝑥)𝑑𝛼
𝑏

𝑎
≤ ∫ |𝑓|

𝑏

𝑎
𝑑𝛼 

and      − ∫ 𝑓𝑑𝛼
𝑏

𝑎
≤ ∫ |𝑓|

𝑏

𝑎
𝑑𝛼 

This gives       |∫ 𝑓𝑑𝛼
𝑏

𝑎
| ≤ ∫ |𝑓|

𝑏

𝑎
𝑑𝛼. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟐. 𝟏𝟑.  If 𝑓 ∈ 𝑅𝛼[a, b], then 𝑓2 ∈ 𝑅𝛼[a, b]. 

𝐏𝐫𝐨𝐨𝐟. Since 𝑓 is bounded on [𝑎, 𝑏] therefore ∃, a numder 𝐾 > 0, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

                        |𝑓(𝑥)|  ≤ 𝐾     ∀ 𝑥 ∈ [𝑎, 𝑏]. 

We have   |𝑓2(𝑥)| = |𝑓(𝑥)||𝑓(𝑥)|  ≤ 𝐾2    ∀ 𝑥 ∈ [𝑎, 𝑏]. 

This shows that  2
f   is also bounded.  

Let    𝑀𝑖
′ 𝑚𝑖

′ be bounds of |𝑓| and 𝑀𝑖
′ 𝑚𝑖

′,  be those of f2 in  ∆𝑥𝑖 , 

 Then,   𝑀𝑖= 𝑀𝑖
′2    𝑚𝑖= 𝑚𝑖

′2                                                                         (33) 

Also, since f ∈ 𝑅𝛼[a, b], then for any 𝜖 > 0 , ∃ 𝑎 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑃 𝑜𝑓 [𝑎, 𝑏],such that        

                𝑈(𝑝, 𝑓, 𝛼) − 𝐿(𝑝, 𝑓, 𝛼) <
𝜖

2𝑘
                                                     

Now, we have 

             𝑈(𝑝, 𝑓2, 𝛼) − 𝐿(𝑝, 𝑓2, 𝛼)  = ∑ (𝑀𝑖 − 𝑚𝑖)𝑛
𝑖=1 ∆𝛼𝑖 

                                  =∑ (𝑀𝑖
′2𝑛

𝑖=1 − 𝑚𝑖
′2) ∆𝛼𝑖 

                                  =∑ (𝑀𝑖
′ + 𝑚𝑖

′)(𝑀𝑖
′ − 𝑚𝑖

′)𝑛
𝑖=1 ∆𝛼𝑖 

                                                     ≤ ∑ (𝐾 + 𝐾)(𝑀𝑖
′ − 𝑚𝑖

′)𝑛
𝑖=1 ∆𝛼𝑖  

                                  = 2K ∑ (𝑀𝑖
′ − 𝑚𝑖

′)∆𝛼𝑖
𝑛
𝑖=1  

                                  = 2K [U (p, f,𝛼) − 𝐿(𝑝, 𝑓, 𝛼)] < 2𝐾.
𝜖

2𝐾
 = 𝜖 .                            

Thus  ∃ partition 𝑃 of [𝑎, 𝑏], such that  

         U (p, f2,𝛼) − L (p,f2,𝛼) < 𝜖       ∀ 𝑥 > 0 

 Hence f2 ∈  𝑅𝛼 [a, b]. 
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 The integral as a limit of sum.  

Earlier, we arrived at the integral of functions via the upper and lower 

sums. The number 𝑀𝑖 , 𝑚𝑖 which appear in these sums are not 

necessary the values of the functions (they are the values of f if f is 

continuous). We shall now that ∫ 𝑓𝑑𝛼 can also be considered as a limit of 

a sequence of sums in which 𝑀𝑖 and 𝑚𝑖 are replaced by the values of f. 

Definition 2.3. Corresponding to partition p of [a, b] and 𝑡𝑖 ∈ ∆𝑥𝑖 ,  

Consider the sum      S (p, f,𝛼) = ∑ 𝑓(𝑡𝑖)𝑛
𝑖=1 ∆𝛼𝑖  . 

We say that S (p, f,𝛼) converges to A as 𝜇(𝑝) → 0, that is 

                    𝑙𝑖𝑚
𝜇(𝑝)→0

   𝑆(𝑝, 𝑓, 𝛼) = A, 

If for every 𝜖 > 0 , 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 δ > 0 , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

             |𝑠(𝑝, 𝑓, 𝛼) − 𝐴| < 𝜖,     for every partition  

𝑃 = {𝑎 = 𝑥0, 𝑥1, 𝑥2, … . . 𝑥𝑛 = 𝑏}  of  [𝑎, 𝑏] with  norm  𝜇(𝑝) < 𝛿  𝑎𝑛𝑑 every choice 

of 𝑡𝑖 ∈ ∆𝑥𝑖  . 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦𝟐. 𝟏𝟒 . If   𝑙𝑖𝑚 𝑆(𝑝, 𝑓, 𝛼) exists as 𝜇(𝑝) → 0, 𝑡ℎ𝑒𝑛 

              f ∈  𝑅𝛼 [a, b]       

  and                 𝑙𝑖𝑚
𝜇(𝑝)→0

   𝑆(𝑝, 𝑓, 𝛼) =  ∫ 𝑓(𝑥)𝑑𝛼
𝑏

𝑎
. 

Proof.   Let us suppose that  𝑙𝑖𝑚 𝑆(𝑝, 𝑓, 𝛼) exists  as 𝜇(𝑝) → 0 and  

is equal to A. 

Therefore for every   𝜖 > 0 , ∃ 𝛿 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑃 𝑜𝑓  

[a, b] with mesh μ(p) < 𝛿 𝑎𝑛𝑑 𝑒𝑣𝑒𝑟𝑦 𝑐ℎ𝑜𝑖𝑐𝑒 𝑜𝑓 
i

t  𝑖𝑛 ∆xi,   we have 

                                     |𝑆(𝑝, 𝑓, 𝛼) − 𝐴| <
𝜖

2
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or         A - 
𝜖

2
< 𝑆(𝑝, 𝑓, 𝛼) < 𝐴 +

𝜖

2
                                                        (34) 

Let p be one such partition. If we let the points 𝑡𝑖 range over 

interval ∆𝑥𝑖  and take the infimum and the supremum of the sums 𝑆(𝑝, 𝑓, 𝛼). 

Therefore yields (34) 

                  A − 
𝜖

2
 < L (p, f,𝛼) ≤  𝑈(𝑝, 𝑓, 𝛼) < 𝐴 +

𝜖

2
 

       Therefore ,         𝑈(𝑝, 𝑓, 𝛼) − 𝐿(𝑝, 𝑓, 𝛼) < 𝜖 

      Hence                 𝑙𝑖𝑚
𝜇→0

𝑠 (𝑝, 𝑓, 𝛼)= ∫ 𝑓(𝑥)𝑑𝛼 
𝑏

𝑎
= A. 

 

    Theorem 2.15.   If f is continuous on [a, b], then f ∈  𝑅𝛼 [a, b].    

    Moreover to every ϵ > 0, ∃ a δ > 0 , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

                                |𝑆(𝑝, 𝑓, 𝛼) −  ∫ 𝑓(𝑥)𝑑𝛼
𝑏

𝑎

| < 𝜖  . 

For every partition 𝑝 = {𝑎 = 𝑥0, 𝑥1, 𝑥2, … . . 𝑥𝑛 = 𝑏} of [a, b] with     𝜇(𝑝) <

𝛿  𝑎𝑛𝑑  𝑓𝑜𝑟  𝑒𝑣𝑒𝑟𝑦  𝑐ℎ𝑜𝑖𝑐𝑒  𝑜𝑓  𝑡𝑖   in  ∆𝑥𝑖 .   

That is, 

                            𝑙𝑖𝑚
𝜇→0

𝑠 (𝑝, 𝑓, 𝛼) = ∫ 𝑓(𝑥)𝑑𝛼
𝑏

𝑏
. 

Proof.  Let  ϵ > 0 𝑏𝑒 𝑔𝑖𝑣𝑒𝑛 𝑎𝑛𝑑 𝑙𝑒𝑡 𝑢𝑠 𝑐ℎ𝑜𝑜𝑠𝑒 𝜂 > 0  , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

              𝜂[𝛼(𝑏) − 𝛼(𝑎)] < 𝜖                                                                            (35) 

Since continuity of  f on the [a, b] implies its uniform continuity on 

[a, b] . Therefore for η > 0  𝑡ℎ𝑒𝑟𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝛿 > 0, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

                    |𝑓(𝑡1) − 𝑓(𝑡2)| < 𝜂, 𝑖𝑓 |𝑡1 − 𝑡2| < 𝛿, 𝑡1, 𝑡2  ∈ [𝑎, 𝑏].                             (36) 

Let P be partition, with μ(p) < 𝛿 , 𝑡ℎ𝑒𝑛 𝑖𝑛 𝑣𝑖𝑒𝑤 𝑜𝑓 (36) 

           𝑀𝑖 − 𝑚𝑖 ≤  𝜂,                                𝑖 = 1,2, … . 𝑛 

      𝑈(𝑝, 𝑓, 𝛼) − 𝐿(𝑝, 𝑓, 𝛼)  ≤ 𝜂[𝛼(𝑏) − 𝛼(𝑎)] < 𝜖 . 
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  Therefore,  f ∈  𝑅𝛼 [a, b]. 

  Again, if   f ∈  𝑅𝛼 [a, b], then for every ϵ > 0 , ∃  𝛿 > 0,   such that for all 

   partitions 𝑃 with  𝜇(𝑝) < 𝛿 

                    |𝑆(𝑝, 𝑓, 𝛼) − 𝐿(𝑝, 𝑓, 𝛼)| < 𝜖 . 

   Since S(p, f, 𝛼) and ∫ 𝑓𝑑𝛼
𝑏

𝑎
. both lie between U(p,f,𝛼) and L(p, f,𝛼) for all  

partitions  p with 𝜇(𝑝) < 𝛿 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖 in ∆𝛼𝑖 . 

         |𝑆(𝑝, 𝑓, 𝛼) −  ∫ 𝑓(𝑥)𝑑𝛼
𝑏

𝑎
| < U(p,f,𝛼) − 𝐿(𝑝, 𝑓, 𝛼) < 𝜖 . 

  Hence                  𝑙𝑖𝑚
𝜇→0

𝑆 (𝑝, 𝑓, 𝛼) = ∫ 𝑓𝑑𝛼
𝑏

𝑎
.   

  Theorem 2.16.   If  f  is  monotonic on  [a, b]  and  if  

    α is contineous on [𝑎, 𝑏], then f ∈  𝑅𝛼 [a, b]. 

  Proof. Let 𝜖 > 0 be given positive number for any positive integer 𝑛,  

  choose a partition  𝑝 = {𝑎 = 𝑥0, 𝑥1, 𝑥2, … . . 𝑥𝑛 = 𝑏}  of  [𝑎, 𝑏], such that     

                    ∆𝛼𝑖 =
𝛼(𝑏)−𝛼(𝑎)

𝑛
 ,            i=1, 2, 3...n. 

 This is possible because α is contineous and monotonic increasing on closed  

 interval [a, b] and  thus assumes every value between its bounded    

  𝛼(𝑎) and 𝛼(𝑏). 

 Let   𝑓 be monotonic increasing on [𝑎, 𝑏], so that its lower and upper bounds 

 𝑚𝑖 , 𝑀𝑖  in ∆𝑥𝑖  are given by  

                          𝑚𝑖 = 𝑓(𝑥𝑖−1 ),     𝑀𝑖 = 𝑓(𝑥𝑖  ),      𝑖 = 1,2,3 … 𝑛 

 Therefore,            

                         𝑈(𝑝, 𝑓, 𝛼) − 𝐿(𝑝, 𝑓, 𝛼) = ∑ (𝑀𝑖 − 𝑚𝑖)𝑛
𝑖=1 ∆𝛼𝑖  

                                             =
𝛼(𝑏)−𝛼(𝑎)

𝑛
∑ (𝑀𝑖 − 𝑚𝑖)𝑛

𝑖=1   
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 =
𝛼(𝑏)−𝛼(𝑎)

𝑛
  ∑ [𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)] 𝑛

𝑖=1   

                             = 
𝛼(𝑏)−𝛼(𝑎)

𝑛
(𝑓(𝑏) − 𝑓(𝑎))    

                             <  𝜖,    for large 𝑛. 

Hence, f ∈  𝑅𝛼 [a, b]. 

Theorem 2. 17. If f ∈  𝑅𝛼 [a, b], and α is monotonic increasing on [𝑎, 𝑏], 

such that    α′ ∈ R [a, b], then   f ∈  𝑅𝛼 [a, b] and  

                         ∫ 𝑓𝑑𝛼
𝑏

𝑏
= ∫ 𝑓𝛼′𝑑𝑥

𝑏

𝑏
.             

Proof.  Let  ϵ > 0 be any given number.  

Since f is bounded, there exist M, such that 

                           |𝑓(𝑥)| ≤ 𝑀,   ∀ 𝑥 ∈ [𝑎, 𝑏] . 

Again since f,𝛼′ ∈ 𝑅[𝑎, 𝑏], therefore f𝛼′ ∈ 𝑅[𝑎, 𝑏}and consequently ∃,  

δ1 > 0, δ2 > 0 , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

         |∑ 𝑓(𝑡𝑖) 𝛼′(𝑡𝑖) ∆𝑥𝑖 − ∫ 𝑓𝛼′𝑑𝑥| <
𝜖

2
                                                            (37) 

 for 𝜇(𝑝) < 𝛿1, 𝑎𝑛𝑑   𝑎𝑙𝑙   𝑡𝑖   in  ∆𝑥𝑖    and 

        |∑ 𝛼′(𝑡𝑖)∆𝑥𝑖 − ∫ 𝛼′𝑑𝑥| <  
𝜖

4𝑚
                                                                   (38) 

 for 𝜇(𝑝) < 𝛿2, 𝑎𝑛𝑑  𝑎𝑛𝑑  𝑡𝑖  ∈ ∆𝑥𝑖 .  

Now  for  μ(p) < δ2 𝑎𝑛𝑑 𝑎𝑙𝑙 ti ∈ ∆xi, si ∈ ∆xi , (38) gives 

              ∑|𝛼′(𝑡𝑖) − 𝛼′(𝑠𝑖)| ∆𝑥𝑖 < 2
𝜖

4𝑀
=

𝜖

2𝑀
                                                       (39)  

 Let  𝛿 = 𝑚𝑖𝑛(𝛿1, 𝛿2) and P any partition with 𝜇(𝑝) < 𝛿 . 

 Also by Lagranges Mean Value theorem , there are points 𝑠𝑖 ∈ ∆𝑥𝑖 , such that  

 ∆𝛼𝑖 = 𝛼′(𝑠𝑖) ∈ ∆𝑥𝑖                                                                              (40) 
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  Now for all 𝑡𝑖 ∈ ∆𝑥𝑖  ; 

 |∑ 𝑓(𝑡𝑖)∆𝛼𝑖 − ∫ 𝑓𝛼′𝑑𝑥| =   |∑ 𝑓(𝑡𝑖)𝛼′(𝑠𝑖)∆𝑥𝑖 − ∫ 𝑓𝛼′𝑑𝑥| 

                         =   |∑ 𝑓(𝑡𝑖)𝛼′(𝑡𝑖)∆𝑥𝑖 − ∫ 𝑓𝛼′𝑑𝑥 + ∑ 𝑓(𝑡𝑖)[𝛼′(𝑠𝑖) − 𝛼′(𝑡𝑖)]∆𝑥𝑖|  

                          ≤ |∑ 𝑓(𝑡𝑖)𝛼′(𝑡𝑖)∆𝑥𝑖 − ∫ 𝑓𝛼′𝑑𝑥|+∑|𝑓(𝑡𝑖)| |𝛼′(𝑠𝑖) − 𝛼′(𝑡𝑖)∆𝑥𝑖|  

                                          <
𝜖

2
+ 𝑀

𝜖

2𝑀
= 𝜖                                                             (41)  

Hence for any  𝜖 > 0 , ∃  𝛿 > 0, 𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠  𝑤𝑖𝑡ℎ  

  μ(𝑝) < 𝛿 , (41) holds 

Therefore,   𝑙𝑖𝑚
𝜇→0

∑ 𝑓(𝑡𝑖)∆𝛼𝑖  exists and equals ∫ 𝑓𝛼′𝑑𝑥 . 

Hence f ∈ 𝑅𝛼 [a, b].  

Therefore,   ∫ 𝑓𝑑𝛼
𝑏

𝑏
= ∫ 𝑓𝛼′𝑑𝑥

𝑏

𝑏
.            

Theorem 2.18. (Particular case). 

If f is continuous on [a, b] and α has a continuous derivative on [𝑎, 𝑏], then  

                       ∫ 𝑓𝑑𝛼
𝑏

𝑏
= ∫ 𝑓𝛼′𝑑𝑥

𝑏

𝑏
.            

 𝐏𝐫𝐨𝐨𝐟.   Under the given condition all the integral exists. 

 Let   𝑝 = {𝑎 = 𝑥0, 𝑥1, 𝑥2, … . . 𝑥𝑛 = 𝑏} be any partition of [a ,b] .  

Thus by Lagrange’s Mean Value Theorem it is possible to find 

 𝑡𝑖 ∈]𝑥𝑖−1, 𝑥𝑖[ , such that 

             𝛼(𝑥𝑖) − 𝛼(𝑥𝑖−1) = 𝛼′(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1)            i=1,2,…..n , 

or                ∆𝛼𝑖 = 𝛼′(𝑡𝑖)∆𝛼𝑖 . 

Therefore      

             𝑆(𝑝, 𝑓, 𝛼) = ∑ 𝑓(𝑡𝑖)∆𝛼𝑖
𝑛
𝑖=1   
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                                      = ∑ 𝑓(𝑡𝑖)𝑛
𝑖=1  𝛼′(𝑡𝑖)∆𝑥𝑖 

                                       = 𝑆(𝑝, 𝑓, 𝛼′). 

   Now letting 𝜇(𝑝) → 0, we get  

                 ∫ 𝑓𝑑𝛼
𝑏

𝑏

= ∫ 𝑓𝛼′𝑑𝑥
𝑏

𝑏

.          

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟐. 𝟏𝟗 . (𝐅𝐢𝐫𝐬𝐭 𝐌𝐞𝐚𝐧 𝐕𝐚𝐥𝐮𝐞 𝐓𝐡𝐞𝐨𝐫𝐞𝐦). 

If a function is continuous on [a, b] and α is monotonic increasing on 

[𝑎, 𝑏], then there exists a number 𝜉 ∈ [𝑎, 𝑏] , such that  

                        ∫ 𝑓𝑑𝛼
𝑏

𝑏
 = f(𝜉)[𝛼(𝑏) − 𝛼(𝑎)]. 

𝐏𝐫𝐨𝐨𝐟: Since f is continuous function and α is monotonic function. 

 Therefore,   f ∈  𝑅𝛼 [a, b]. 

  Let   m and M be infimum and supremum of f in [a, b],  then 

            𝑚[𝛼(𝑏) − 𝛼(𝑎)] ≤  ∫ 𝑓𝑑𝛼
𝑏

𝑏
≤ 𝑀[𝛼(𝑏) − 𝛼(𝑎)] 

  This implies that    

                      m  ≤  
     ∫ 𝑓𝑑𝛼

𝑏
𝑏

𝛼(𝑏)−𝛼(𝑎)
 ≤  𝑀 

    Let             C   =    
     ∫ 𝑓𝑑𝛼

𝑏
𝑏

𝛼(𝑏)−𝛼(𝑎)
 

Then,       ∫ 𝑓𝑑𝛼 
𝑏

𝑏
= C{𝛼(𝑏) − 𝛼(𝑎)]   where m ≤ 𝐶 ≤ 𝑀.                                       

Since f is continuous function therefore ∃ 𝜉 ∈ [𝑎, 𝑏]. 

                    f(𝜉) = 𝐶. 

Thus    ∫ 𝑓𝑑𝛼
𝑏

𝑏
 =f(𝜉)[𝛼(𝑏) − 𝛼(𝑎)]. 

Hence the theorem. 
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   Theorem 2.20. If f is continuous and α monotonic on [𝑎, 𝑏], then 

                        ∫ 𝑓𝑑𝛼
𝑏

𝑎
  = [f(x)𝛼(𝑥)] 𝑏

𝑎
   − ∫ 𝛼𝑑𝑓

𝑏

𝑎
 

  𝐏𝐫𝐨𝐨𝐟. Under the given condition all the integrals exist. 

  Let     𝑝 = {𝑎 = 𝑥0, 𝑥1, 𝑥2, … . . 𝑥𝑛 = 𝑏} be a partition of [𝑎, 𝑏]. 

  Choose  𝑡1, 𝑡2, 𝑡3, … . . 𝑡𝑛  , such that       

                            𝑥𝑖−1 ≤ 𝑡𝑖 ≤ 𝑥𝑖 ,  

   Let        𝑡0 = 𝑎,    𝑡𝑛+1 = 𝑏, so that  

             𝑡𝑖−1 ≤ 𝑥𝑖−1 ≤ 𝑡𝑖 . 

     Clearly   𝑄 = {𝑎 = 𝑡0, 𝑡1, 𝑡2, … . . 𝑡𝑛, 𝑡𝑛+1 = b} is also a pattition of [𝑎, 𝑏]. 

   Now    

       𝑆(𝑝, 𝑓, 𝛼) = ∑ 𝑓(𝑡𝑖)∆𝛼𝑖
𝑛
𝑖=1   

   = f(𝑡1)[𝛼(𝑥1) − 𝛼(𝑥0)] + 𝑓(𝑡2)[𝛼(𝑥2) − 𝛼(𝑥1)] + ⋯ + 𝑓(𝑡𝑛)[𝛼(𝑥𝑛) − 𝛼(𝑥𝑛−1)] 

    =−𝛼(𝑥0)𝑓(𝑡1) − 𝛼(𝑥1)[𝑓(𝑡2) − 𝑓(𝑡1)] + 𝛼(𝑥2)[𝑓(𝑡3) − 𝑓(𝑡2)] + ⋯  𝛼(𝑥𝑛−1) + 

                                                      [f(𝑡𝑛) − f(𝑡𝑛−1] + 𝛼(𝑥𝑛)𝑓(𝑡𝑛)] 

  Adding and subtracting  𝛼(𝑥0)𝑓(𝑡0) + 𝛼(𝑥𝑛)𝑓(𝑡𝑛+1) 

𝑆(𝑝, 𝑓, 𝛼)= 𝛼(𝑥𝑛)f(𝑡𝑛+1)− 𝛼(𝑥0)𝑓(𝑡0) − ∑ 𝛼(𝑥𝑖)[𝑓(𝑡𝑖+1) − 𝑓(𝑡𝑖)]𝑛
𝑡=0  

                      = f(b) 𝛼(𝑏) − 𝑓(𝑎)𝛼(𝑎) − 𝑆(𝑄, 𝛼, 𝑓)                                  (42) 

  If  𝜇(𝑝) → 0, then   μ(Q) → 0  , so we  get  

             Lim S(p, f.𝛼) = ∫ 𝑓𝑑𝛼
𝑏

𝑎
  

   and       Lim S(Q,𝛼, 𝑓) =  ∫ 𝛼𝑑𝑓.
𝑏

𝑎
 

  Hence proceeding 𝜇(𝑝) → 0, we get from (42) 
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           ∫ 𝑓𝑑𝛼
𝑏

𝑎
 =  f(b) 𝛼(𝑏) − 𝑓(𝑎)𝛼(𝑎) − ∫ 𝛼𝑑𝑓 .

𝑏

𝑎
 

 Therefore,        ∫ 𝑓𝑑𝛼
𝑏

𝑎
= [𝑓(𝑥)𝛼(𝑥)] 𝑏

𝑎
  - ∫ 𝛼𝑑𝑓

𝑏

𝑎
 

 This completes the proof. 

 The above theorem is also known as second Mean Value Theorem. 

 𝐅𝐮𝐧𝐝𝐚𝐦𝐞𝐧𝐭𝐚𝐥 𝐓𝐡𝐞𝐨𝐫𝐞𝐦  of Calculus. 

  𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟐. 𝟐𝟏:  A function f ∈ 𝑅[𝑎, 𝑏] and there exists a function F such     

  that F’= f on [a, b], then 

              ∫ 𝑓𝑑𝑥
𝑏

𝑎
 = F(b) - F(a) . 

 𝐏𝐫𝐨𝐨𝐟.  Since the function F’=f is bounded and integrable  therefore for    

 given  ϵ > 0, ∃  𝛿 > 0 , 𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡  𝑓𝑜𝑟  𝑒𝑣𝑒𝑟𝑦  𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛  

                𝑃 = {𝑎 = 𝑥0, 𝑥1, … … . . 𝑥𝑛}  with  norm  𝜇(𝑝) < 𝛿, 

          

                |∑ 𝑓(𝑡𝑖)∆𝑥𝑖 − ∫ 𝑓𝑑𝑥
𝑏

𝑎
𝑛
𝑖=1 |  

                         𝑜𝑟                                                                        (43)                 

          𝑙𝑖𝑚
𝜇(𝑝)→0

∑ 𝑓(𝑡𝐼)𝑛
𝑖=1 ∆𝑥𝑖 = ∫ 𝑓𝑑𝑥

𝑏

𝑎
 

for every choice of points 𝑡𝑖 in ∆𝑥𝑖  . 

Since we have freedom in the selection of points 𝑡𝑖 in ∆𝑥𝑖 , we 

choose them in particular way as follows 

By Lagrange’s Mean Value Theorem, we have 

             F(𝑥𝑖) − 𝐹(𝑥𝑖−1) = 𝐹′(𝑥𝑖)∆𝑥𝑖 ,    𝑖 = 1,2,3 … … 𝑛 

                                 =   𝑓(𝑡𝑖)∆𝑥𝑖 

   This implies that 

                               ∑ 𝑓(𝑡𝑖)∆𝑥𝑖 =𝑛
𝑖=1 ∑ [𝐹(𝑥𝑖) − 𝐹(𝑥𝑖−1)]𝑛

𝑖=1   
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                                                  =    𝐹(𝑏) − 𝐹(𝑎) 

    Therefore ,    𝑙𝑖𝑚
𝜇(𝑝)→0

∑ 𝑓(𝑡𝑖)𝑛
𝑖=1 ∆𝑥𝑖 = 𝐹(𝑏) − 𝐹(𝑎) . 

   Hence                 ∫ 𝑓𝑑𝑥
𝑏

𝑎
 = F(b) - F(a). 

 

   Remark. It is this theorem that shows under certain conditions    

    integration and differentiation are reverse processes. 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 


