The main objective of this unit is to discuss the concept of an
infinite series their convergence , conditional, absolute and the process
of their rearrangements. We will be discussing certain tests for
convergence of sequence and series namely Abel’s Test, Drichlet’s Test
and some important theorem like Carleman’s theorem, Dirchlet’s
theorem and many others. In the end of this unit we will consider the
sequence and series of functions and we prove their convergence and

uniform convergence by important tests.

Definition Infinite series 1.1. We are already familiar with
arithmetic and geometric series. In an arithmetic series, each term
after the first term is formed by adding a fixed number to the
proceeding term and in a geometric series, each term after the first is
formed by multiplying the proceedings term by a fixed number. A
series can be made by other ways also. For example, the series
1+44+9+16+25+36 is formed by the squares of the first six natural

numbers. A series is the sum of the terms of sequence.

Thus if uy, u,......is @ sequence, then the sum u; + u,.....of all terms is

called an infinite series and is denoted by Y2, u, or simply by Y u,.
If we denoted S,, by u;+ u, +..ee. U, -
That is ,

Sp = U tuy;+aliuy

Then the sequence < §,, > is called a sequence of partial sums of series

and the partial sums,

Si=uy, S5=ut uy e . Su

and S, = uw tu,+-uy,



and so on may be required as approximation to infinite series Y u,, .

The series Y u, s convergent if the sequence of partial sums are

convergent,

That is if lim S, exits,

n—-oo

Then, Y u, isconvergentand we write lim S, = Y u,.
n—0oo

Carleman’s Theorem 1.1.

Suppose ) a, be convergent series of positive terms, then
1
Yori(aqa, .....a,)n is convergent and Y u,. < e a,.

where  up= (a1 o verap) -
Proof: We define ¢, by

C1Cp e Cp = (M4 D"

C1Cp v ven i Cpq1 = (n)n—1

Dividing (i) and (ii), we get

(n+1)™"
(myn

Ch =

Cn n+1

This implies that = = (—)"

Now
- 1
Z(alaz ........an)n = Z(alaz an)n 1
1
= (c1€z.Cp)n
= Y(a,ay.....ay) .
1 1
This implies Y (@@ oo e ernn ) = G2 Cn)E

(1)
(2)

(3)

(4)



By Arithmetic-Geometric Mean Inequality, we get from (4)

1 A1C1+AnCo+ e anc
< 1€1+02C; nCn
Y(@aay cnienvcay)n <Y y— (5)
We have
1 1 1 1
[alcl(a+g+---...)+a2c2 (£+§+°")+“'+

akck( 1 + ! +)+]
k(k+1) (k+1D(k+2)

=Z;2°=1akck( ! + L + e )

k(k+1) | (k+D(k+2)

= Yke1 Ak Cr Lmek (;) (6)

n(n+1)

We have 32, (——) = 22,(3-=)

n(n+1) n+1

= (l_i)ﬁ-(i—i)ﬁ‘ .............
k k+1 k+1 k+2

1
=% (7)

Therefore from (5) , (6) and (7) ,we get

1
= C
Y(a1ay ey < X aki

k+1

= N (CHE by (3)

1
Yz ar(1+ ;)k
< eYpliay (as lim(1 +l)" = e).
k—oo k

Therefore (1 +%)k < e Vk=1.

1
Hence Y(a 0y .....@py)nr < eYrr a, .

1
This shows that }.(a;a, ...........a,)n is convergentas Y.a, is convergent.



Conditional and Absolutely Convergence.

Definition 1.2. A series >a, is said to be absolutely convergent if

> |la,| is convergent.

Conditional Convergence 1.3. A series which is convergent but

not absolutely convergent is said to conditional convergent.
That is, if 2a, is convergent but Z|a,| is not convergent.

Then, Za, is conditional convergent.

Example 1.1. Consider a series Z(_l)n).

n2

_1)1'1

Then, Z( ) is convergent.

n2

_1)1'1
n2

Also, Y. |(

1 .
)|= Z; is convergent .

Therefore , ). (_l)n) is absolutely convergent .

n2

Example 1.2. Consider a series Z(_l)n) :

n

Then, ) (%n) is convergent .

But, ) |(%)n)| = Z% is not convergent.

Therefore, Z(%n) is conditional convergent .

Theorem 1.2, Every absolutely convergent series is convergent.
or The convergence of }|a,| implies the convergence of Y a,.
Proof: Suppose ) |a,| isconvergent.

Hence for every € > 0,by Cauchy's general principal of convergence.



There exists a positive integer m such that,
|apiq| + lapia] + - .....+|an+p|| <€ Vn=mandp

> 1 (8)

Also, for all vn>mandp > 1 ,we have
|ans1 + Anga F e e v+ Anyyp|
< laps| + lagyo| + -+ .....+|an+p| <e€ by (8) .
Therefore by Cauchy criteria, ¥ a,, is convergent .
Remark 1. Divergence of }:|a,| does not imply divergence of Y a,, .

Example 1. 3. The given series

> |(%)n)| is divergent .

But , the series Z(_l)n) is convergent.

n

This shows that the converse of above theorem is not true in general .

Test for Series of arbitrary terms.

We now consider arbitrary term series which are convergent (but
not necessarily absolutely convergent) and obtain tests for their

convergence. We first prove an important lemma, due to Abel’s.

Lemma 1.1. If b, is positive , monotonic decreasing function and if 4,,
is bounded , then the series ), A, (b,, — b,,_;) is absolutely convergent.
Proof: Since A,, is bounded .

Therefore there exists a positive number k, such that,



A, | <k, Vn.

Thus, ?11=1|An(bn - bn+1)|

Al (By = i)l = Z0lAn(by — byis) (b, <b)
< Yn=1 k(by — bpyq)
=K (b, — bpy1)< Kb;.
Thus, the sequence of partial sums of positive term series,

m An(by, — byy1)| isbounded above by kb;, so that
m A, (b, — b, ,1)|is convergent.
Hence Y A,,((b, — b,,1) is absolutely convergent.

Theorem Abel’s test 1.3.

If b,, is positive monotonic decreasing and if ), u,, isa convergent series, then
the series Y u,b, is also convergent.

Proof: Let V, =u,b, and

—_ n — n
Sn = iU, W= i=1 Vi -

Then,
V, =u by +uyby + - +u,b,
= S1by + (S — S1)by + (S5 = S3)bs + .. (Sp — Sp_1)by,
= S,(b; — by) + Sy(by — b3) s ee. +Sp_1(by_y — b,) + S, by,
= X Si(by — biy1) + Syby 9)
Since, Y u, is convergent . Therefore, the sequence < S, >

is also convergent .

Also, b, is positive and monotonic decreasing function .



Therefore by above lemma, the series ) S,,(b,, — b,+,) iS absolutely
convergent and hence the partial sums Y'S;(b; — b;;,) tends to

finite limit as n — oo.

Also, since b,, monotonic decreasing and bounded below by 0.

Therefore < b, > is convergent and so b, tends to a finite limit as n -» «.
Hence S,,b,, tends to finite limit as n —» oo,

By using the above result we find from (ix) that V, tends to finite

limit as n - .
That is the sequence < V,, > of partials sums of )V}, converges.
Consequently the series ).V, or ) u,b, converges.

Remark. A convergent series ) u, remain convergent if its terms

are multiplied by’a,’ where a,, is bounded and monotonic decreasing .
Theorem Drichlet’s Test 1.4.

If b, is positive monotonic decreasing with limit 0 and if for the series ) u, .
The sequence {S,} of partial sums of Y u, is bounded, then the series

Y. u, b, is convergent.
Proof. Let S,= Y',w, V, =u,b,
and V, = XLV = Xitiub; .
Then, as before

V, = Z?z_ll S;(b; — b;y1) + S,b, (10)
Since S,, is bounded and b, is positive and monotonic decreasing .
Therefore by above Lemma Y}, S; (b; — b;;1) tends to finite limit asn — oo.

Also, since b, » 0andn — o0, S, is bounded.



Therefore, S,b, >0 as n - .
Using the above result we find from (x) that V, tends to finite limit as n - o
and hence the series )V, = Y u,b, converges.

Example 1.4. Show that the series

Solution. Take YV, =1—1+—-F2—24. (11)
1,1,2 3 3

and Zun—0+5+z+g+z+z .....

Since series (11) is convergent and the < u,, > is monotonic and bounded.

Therefore Y Vu, =0-— % + 21 — § +2— i +2— s convergent.

1
Example 3.5. Test for the convergence of series, ) <—(”3+)3‘” >

logn

1

1
Solution. Let u, = {(n3 +)3 — n} and b, = oom

Since ) u, is convergent and {b,, }is positive , monotonic decreasing
sequence tends to 0 asn — oo.

Therefore ), u,v, is convergence .

Hence given series convergent .

Rearrangement of Terms.

If the terms of finite sum are rearranged then the sum of finite
series remains same. But if the term of infinite series are

rearranged, then the sum of infinite series varies.

Example. Consider the series



1-— % + g - % + --- converges to the sum S.

But, if terms of above series rearranged so that each positive term is followed

by two negative terms, then the series
1—1——+l———1+---convergesto =S
2 3 8 2

Another rearrangement of above series say

(1+1+1+1+ ) (1+1+1+ )d'

Thus, if the series Y u, is convergent, then the rearrangement of

this series may diverge.

Rieman’s Theorem 1.5. By an appropriate rearrangement of the

terms a conditional convergent series } u, can be

(i) Converge to any number o or
(ii) Diverge to +oo

(iii) Diverge to —

(iv) Can oscillate finitely

(v) Can oscillate infinitely.

(uy, ifu, =0
Proof. Let a, = {0’ ifu, <0

(U ifu, <0
and bn = {0, if u, >0

Then, clearly a, and b,, are non — negative and
Uy, = a, — by
lu,| = a, + b, (12)

Since ) u, is conditional convergent .
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Therefore Y|u,| diverges and hence from (12) , at least one of the series
Y.a,, or Y. b, diverges.
Again, Since ) u, is convergent.
Therefore from (12), it follows that the two series ), a,,,
Y. b,, either both converges or both diverges .
Thus, Y a, and Y b, both diverges.
Also, a, - 0,b, » 0 (because u, » 0 asn — 00).

(i) We shall first show that a rearrangement YV, of Y u,, can be found

which converges to any humber o.
Let n, be the least number of terms of }; a, , such that
ata,++ay, > o
Let m, be the least number of terms of the series ), b,, such that
ata;+--+-+ay, —by—by;——by <o
Again, let n, be the number of terms of }; a,,, other than previous, such that
a,+a;+--+a, —by—by....—bp, +
+an,,, tan, ,+tan, ., >0
Let m, be the least no. of next terms of }; b,,, such that
a,ta,+--+a, —by—by,—-—bp, +
—-b —-b

+an1+1 + An, 4y +ot Anpiinz — b <a

mi4q miq2 mii+m2

The process may be continued indefinitely. The process indicated
above is always possible, because of the divergence of two series Y a,,
and ) b,.
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Let YV, be the rearranged series and {o, }its sequence of partial sums.

Clearly, o, >0, 0,,, < > 6, <o

O-Tl1+m1+m2 Ni+mi+n2+ma2

Therefore it can be easily shown that the sequence {g,} converges to o.
This implies that

(i) The rearrangement series Y. V,, converges to o.
(i) We shall now show that a suitable rearrangement

of Y a,,can be found which divergesto + o .
Let us consider the rearrangement
ay+ayto.. @y —byFby
+am, — by + apy,, , +
in which a group of positive terms followed by single negative term.
This is certainly a rearrangement of ) u,, and let us denote it by ). V,
and its partial sum by S, .

Now since the series

Y. a, is divergent, its partial sums are therefore unbounded .

Let us choose m, ,solargethata; + a, + - .....+ay,, > 1+b;

Then,
m, > my ,solarge such that

apta;+ @y o tay, >2+by + b,

1
And in general m, > m,_, so large that
a,+a,++ap, >n+b;+b,+--+b, forn=1,2,3....

Now since each of the partial sum S, . ,S,,,.,...of XV, whose
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last term is negative term — b,, is greater thann(n = 1,2,3 ... .....).
Thus, the series YV, divergesto + o .
(ii) By considering the rearrangement

—by —by—..by, ta;—b —++..=bp, +---..itcan be

Mmi42

This show that the rearrangement diverges to — ©o.

Other cases may similarly be proved by considering the suitable

rearrangement of given series.

Example 1.6. Criticize the following paradox

TS m—
2 3 4

2

=1+l ) (1t )

=0

= (143424 )=2(G+3+)

Hence the series converges to zero.
Multiplication of Series.
Definition 1.3. Given two series Y a, and ). b, .
Weput C, = Ypeo@xbpx(n=0,1.2,.....)
and call ¥, C,,, the cauchy's product of ¥ a,, and Y b,,.
Here Ya, b, = XC,.
Let us denoted by

A, =ay+a,+a,+-..+a,

Bn=b0+b1+b2+”'....+bn
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and C, = (agby) + (a;by + agby) + a,by + a,b; + agby) +
..(agbh, + -+ ayby)
Note that A,B, # C,.
Marten’s Theorem 1.6. Suppose Y a,=4
and Yb, =B and } a, isabsolutely Convergent,
Then, LimC, = AB.
Proof. Put A,=a,+a;+a,+..+a,
B,=by+ by +b,+--..4+b,
and B, = B,—B where B, >0 asn — oo,
Then, Ch = Xr=obn_k
= agby + (aghy + a.by) + -+ + (agh, + ayby_1 + -+ . +a,by)
= ayB,+a;(B,_;) +..+a,B,
=ay(B, + B) +a,(Bp_1 +B) + - ...... + a, (B, + B)
=B(ay+a,+a, +..+a,)
+agfn, + a1fn_q + 0 Fayfo -
This implies that ¢, = A,B+v,
where vy, = agBn + a1fn_1 + -+ anfy -
To prove that C, — AB.
Since A, B — AB,itis suffice to show that
Yn, — 0as n - oo,
Put a = Yla,|.

Since f, = 0 as n — ©o.
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Hence given € > 0,we can find N such that
1B, <€, V n>N./
Therefore,
[Val = lanBo + an_1B1 + - an_ni1Bn-1 + aGn_nBy + - +aofnl
< lanBo + an_1B1 + - An_ns1Bu-1l + |@nnBy + -+ . + a0 Br]
< la,fo + an_1f1 + - e . pn_n+1Bn-1] + €.
Keeping N fixed and Letting n —» co and noting thata,, » 0 as n — co.
We get,

Lim |y, < €ea.
n—>0o
Now letting € — 0, we get
Lim |y,| = 0.
n—0oo
This implies Lim y,, = 0.
n—-oo

Thus limC, = AB.

n—oo

Uniform Continuity.

Definition 1.4. A function f on interval I is uniformly continuous if for

each e >0, 36 >0 ,such that

If(x) — f(x,)] <€  whenever|x; —x,| <86 x;, x, €L
Theorem 3.7. If f is uniformly contineous on I, then it is contineous on that
interval .

Proof. Suppose f is uniformly contineous on I. Then ,V ¢ >0,3 § >

0, such that
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|f(x) — f(xy)] <€ whenever |x; —x,| <8 X1,X, €1 (13)
Let ac€l.
Then, foralle >0, 3 § > 0,such that
If(x) — f(a)| <e€ whenever |x —a| < 8
This implies f is contineous at x = a. Since ’a’is choose arbitrary.
Therefore f is contineous on I.

Heine’'s Theorem 1.8. A function which is continuous on closed

interval [a, b], then it is uniformly continuous on [a,b] .
Proof. f iscontineous on [a,b].

Let if possible f be not uniformly continuous on I = [a, b] then there exit

€ > 0, such that for any § > 0, there are numbers x,y €1, for which
lf(x)—f)| <« ¢ whenever [x —y| <9d .
Hence for each positive n, we can find x,, y, € I, such that
f () = FOm)l Z € (14)
whenever  |x, —y,|<0.
Since {x,}, {y.} being sequence in I, they are bounded and therefore each has
atleast one limit point say a, and a, respectively .
Since I is closed set.
Therefore a,,a, € I.
Since a, is limit point of {x,,}, there exits a convergent subsequence {x,}
of {x,}, such that

Xpr = ;a8 k — ©o,
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Similarly there exists a convergent subsequence {y,} of {y.}, such that
Vok — Ay as k — 00,
Again from (14)
f Cenie) = F (i) | ¢ €

Whenever |Ctr) — V)| < nik < (15)

&=

Second inequality shows that
fg’g Xnk = A{i’g}’nk .
This implies
a,=a,=a.

But, { f(xu)} and {f (y.)} Converges to two different numbers by (14)
which contradicts to the fact that f is continuous on I = [a, b].
Thus our supposition is wrong.
Hence f is uniformly continuous on I = [a, b].
Exercise. Show that (i) f(x) = x? is uniformly contineous on ]0,1].

(ii ) f(x?) is uniformly contineous on [—1,1].

(iii)  f(x) = sinx is uniformly contineous on [0, o).
Darboux’s Theorem 1.9. If f is derivable on [a,b] and f'(a) # f'(b),
then for any number k between f (a)and f'(b) ,3 ¢ € (a,b),such that

flo)=k.

Proof. Suppose f'(a) <k < f'(b).

Consider a function g(x) = f(x) — k(x).



Then, g'(a) = f(a)—k <O
and g = f(b)—-k >0.

By definition, leM = g'(a)

x-a —-a

and - LmEEEE = g0).

Thus, Ve >0, 3 6,6, suchthat

g—(xi:‘z(a) - gl(a)| <e€ when |x—al <4
and
%—g’(bﬂ <e when  |x—b|<$6,.

Let O = min{6, 6, }.

gx)—g(a) _ g'(a)l <e€ and g(x)—g(b) _ g’(b) <e

Then — =
whenever lx —al <6, |x—b| <6.
This implies
g(a)—e< M<g (a) + ¢,

This implies that
gb)—e< g%}ﬁ9<g(M4-e
whenever |[x—al|<§,|x—b|<$§
Choose € so small, such that
g@+e<0

and \
g'b)—e>0

(17)

(16)

17



Thus from (1) and (2), we get
gla+h) <g(a), gla—h)>gla)

and

g +h)>g), gb-h)<g) where0 < h< 4§
Since g is derivable on [a, b].
Therefore continuous on [a, b]and attains supremum in [a, b].
Clearly by (18) g has no supremum at a or at b.
Then there exist ¢ € (a, b), such that

g(c) = sup{g(x)}

Claim: g'(c) =0 .
If possible g'(c) > 0.
Then, g(c + h) > g(c) as before which is not possible.
Alsoif, g'(c) <0,
Then , g(c — h) > g(c) as before which is again not possible .
Thus, g'(c) =0
This implies that

()= k where ¢ € (a,b).

Hence the theorem follows.

18

(18)

Corollary. If f is derivable in [a, b] such that f’(a) and f (b)are opposite

in sign , then there exits 0 € (a, b),such that f’(0) = 0.
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Theorem 1.10. If ﬁlanﬁ = % , then
The sreies Y, a,x™ is convergent for |x| < R
and diverges for |x| > R.

Proof. We have

N - 1
m,ela,x™|Y" =lim|a,|n. |x| = %l .

Therefore Y a,x™ converges, if

Ix1
R

[x]|

<1 and diverges if —>1.

Thus, Y a,x™ converges,if |x| <R

and divergesif |x] >R when R = : I.

Lim|ay|n

Definition 1.5. In view of above theorem, the radius of convergence

of power series Y a,x" is defined as

I 1
;1, when bLmla,|» >0

mmnlﬁ
— 1
= 0 , when Lmla,|»= 0
— 1
=0 , when Lim|a,|r» = o0
Abel’s Limit Theorem 1.11. (First form, at Centre).

If the power series converges at the end point x = R of the interval of

the convergence -R < x < R, then it is uniformly convergent in [0, R].
Proof. We shall show that under the given assumptions cauchy’s criteria for
uniform convergence is satisfied in [0, R] . This will imply the uniform convergence

of power series ) a,x™ on[0,R] .
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Let  S,p = apu R+ 4ayy, for p =123, ...

Then, obiviously

an+1Rn+1 = Sn,l
n+2 _
an+2R - Sn,z - Sn,l
n+ —
Ansp R™P =S, = Snps (19)

Let € > 0 be given .Since the series

Y a,R™ is convergent, therefore by Cauchy sgeneral principal of convergence
there exists an integer N such that forn > N

1S0q] < € Vqg=123..., (20)

Taking into account that

X n+p _
(E) S @Mt << (D™ for 0<Sx <R

Using (19) and (20), we have

Forn=N
n+1 n+2 n+
| a1 X™ Y+ Gy ™ 4 e A X TP
— n+1X\n+1 n+2 (X\n+2 n+p (X\n+
= |@ns R E)™ + QiR 2 ()™2 + oo b Qg p P ()P |

= 801G + (Snz = Su )2+ et (SupSnp-1) )|
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Sl @M = G+ Sn [ = QT 4

+Snp-1 [P = ™ML + Sy p ()P

< |Sn,1| {((%)n+1 _ (%)n+2} + |Sn,2|[(%)n+2 _ (%)n+3] o
e H S g [P = )P £]S,,, | D)

< € @M - -+

Gt — (G by (20)
= e(g)"+1 < € vV n=N, p=>1V x€[0,R].
Thus V € >0, 3 N such that
|ans1 ™ + @i x ™ 4 e A XMTP < €
vn=N, p=>1 x€][0,R].

Hence by Cauchy’s criteria, the series converges uniformly on [0, R].

Abel’s Theorem 1.12. (Second Form).

If Y a,x™ be power series with finite radius of convergence R and let
f(x) = Ya,x®, - R<x <R . Ifthe Y a,R" converges,then

[ — n
lim f) = TauR™.
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Proof. Let us first show that there is no loss of generality in taking
R=1
Put x = Ry , sothat

Yapx™ = Ya,R"y"

= Yb,y" where b, = a,R"

It is power series with radius of convergence R’

1 1
where RM=——= = -.—

Lim|a,R"|n

Thus it suffice to prove the following:

Let Y a,x™ be power series with unit radius of convergence and let
flx) = Ya,x", —1<x<1.
If the Y a, converges, then
lim f(x) = Lay

Let S,=ay+a,+:...+a,

andlet Y ,a,=S8=Ya,,
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Then/ Z?f:o anxn = rT?=0(Sn - Sn—l)xn
Yo SnX"™ — Xnto Sp—1X"

— m-—1 n m m n
- n=0 SnX + SmX _Zn=0 Sp-1X

=y s, x® —x XM s, x™ L+ 5,,x™
= Ymls,x™ —YMts,x™ + s,x™
=(1-x) ¥t s, x™ + 5, x™ for |x| < 1,when m — o,
Since Sm = s and x™ — 0, we get
f(x) =0—x) XYooSpx™, for 0<x<1 (21)
Again since s, — s,for € > 0.there exists N, such that
|Sn—s|<§ Vn=>N (22)
Also, A —-x)Ypx"=1, for |x|<1 (23)
(1=0)Zx™ =ZFx" = X5 x" =X x" = 1))
Hence for n> N, we have for0<x<1
If(x) —sl = [(1—x)X5ospx™ —s] using (21)

= A =x) Xazosax™ — (1 —x) Lo x" 5] by (23)

= (1 —x) Xalo(sn — s)x™|
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< (1-2)Xnzol(sn — )™
= (1-x){ZR=0l(sn = Nx™ + iyl (sn — $)1x™}
< (1) {Zoolsy = DIx™ +ETiyan 27} by (22)
< (1-)TN-olsy — sla™ + =
But for fixed N, (1-x)XN_,1S, — S| x™ is a positive continuous function of
X having zero value at x=1.
Therefore, 70 >0, such that for 1-0 < x < 1,
(1-X)ZR=0lSn = SIa™ <3
If(0) =Sl <+~ for 1-6<x<1.
Hence xli'rln_f(x) =S=)r 00, -

This completes the theorem.
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In this section we shall study the theory of Riemann-Stieltjes
integration which is the generalization of Riemann theory of
Integration. It may be stated once for all that, unless otherwise stated,
all functions will be real valued and bounded on the domain of

definition. The function a will always be monotonic increasing.

Definition & Existence of Riemann-Steiljes Integral (RS-Integral).

Definition 2.1: Let fand « be bounded functions on [a,b] and « be
monotonic increasing functionon [a,b], b = a
Corresponding to any partition

a=X,<x<x,<... <X ,<X =b.

We write,

AX, =X, —-x,_, fori=1,2,... ,n.

It is clear that, A x, > 0.

As a be a monotonically is increasing function on [a,b]. Since
a(a) and «(b) are finite, it follows that « is bounded on [a.b] .

Corresponding to each partition P of [a,b], we have
Aa, =a(x)-a(x,) fori=1,2,... ,n.

It is clear that a«, >0. For any real function f which is bounded on

[a.b], We have
U(P,f,a) = Zn:MAai

L(P,f,a): ZmAai
i=1
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where M, ,m, arethe bounds (supremum and infimum of f
respectively over Ax; = [x;_1,x;] -
If m and M are the lower and the upper bounds f on [a,b] , we have

Then, m<m <M <M

This implies that
MYt Aq; < Yh m; Aa; < Y M; Aa; < MY, Aa; .
This implies
mYi—la(x) —a(xi- )l < L(p,f.a) <U(p,f,a) < M XL [a(x) — a(x;i-q)]
This gives
m[a(b) —a(a)] < L(p.f,a) < Ulp,f,a) < M[a(b) —a(a)] (1)

Since we have infinite number of partitions on [a, b] and for every

partition, we have upper sum and lower sum.
Let S, is the set of upper sums. And S, be the set of lower sums
That is
S={U@f.a): p € plab]},
and
S;={L(.f,a): p € pla,b]}.
From (1), S; and S, are bounded sets.

Therefore S; has greatest lower bounded and S, has least upper bound.
Let g. L. b(s)= ["fl)da(x),

and I u. b (Sy) = [ f(x)da(x)

That is " fda = Inf-{u(p,f,a):peplabl},
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and [0fda = Sup.((v.f.@):pepla,b]}

These are respectively called upper and lower the integrals of f with respecttoa.

These two integrals may or may not be equal. In case these two integrals are equal.
[["fda = [)fda
a a '
We say f is interable with respect to « in the Riemann sence and , we write

f € R,la, b] or simply f € R, and the common value is denoted by
b
[P f da
or sometimes by ff f(x) da(x)

and is called the Riemann — Stieltjes integral of f with respectto over [a, b].

b
If [fda exists, then we say that f is integrable with respect to ,, ,

in the sense of Riemann, and, we write f cR(a).

By taking o (x)=x the Riemann integral will be a special case of the
Riemann -Stieljies integral.

Refinement of Partitions.

Definition 2.2. For any partition P, the length of the largest sub -
interval is called norm or mesh of the partition and is denoted by

u(p), (or simply u) and (P) = maxAx; , 1<i<n.
A partition p* is said to refinement of p if p S p*.

We also say that p* refines P or that p* is finer than P.
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If p, and p, are two partitions, then we say that p* is their common

refinement if

p* =p,Up, .
Theorem 2.1. If p* is a refinement of a partition p, then for a

bounded function f,

(i) Lp.f,a) = (p*,f,a)
(ii) uip*, f, &) < U(p.f, @)

Proof. To prove (i), suppose first that p* contains just one point more

than p.
Let this extra point be ¢, and suppose this point is in Ax; = [x;_; x;],
That iS, Xi-q < f < X;.

As the function is bounded on entire interval [a, b]. It is bounded in

every sub interval Ax; (i =1,2,3....n).
Let wy, w, , mi be the infimum of f in the intervals [xi_l, f], [&,x;] and [x;_4, x;],
respectively .
Clearly m; <W;, m; <W,.
We have
L (p*f, @)~ L (p,f @)

={w;[a(§) — alx;_1) + Wyla(x;) — a(E)] —m;[alx;) — alxi-1)]
= (w; —m)[a(®) — alx;_)] + (wy, —m;)[alx;) — a($)]

>0.

If p* contains k points more than p, we repeat this reasoning k times

and conclude



L(p*f, @) —L(p,f,a) = 0
This implies that
Lp*,f,a) 2L (p,f,a)

or Lp.f,a) = (p*,f,a) .

(ii) Home Assignment. The result follows from Theorm 2.1 (1).

Theorem 2.2. If f is bounded function on [a, b] and p,,p, € Pla, b], then

L(py, f,a) < U(py, f, ).

Proof. Let P = p,; U p, be the common refinement of p; and p, .

Then from the above theorem , we have
Lpyfra0) <L(p,f,a) U@, f,a) < U(py, f, ).
This gives
L(pyfra) <U(pyfra).
Hence theorem 2.2 follows.

Theorem 2.3. If f be a bounded function on [a, b], then

fl;fdas " f da .

Proof. We know that

U(p,f,a) =L, f,a) for all p,,p,€ Pla, b].

We first keep ‘p,’ fixed and vary p,, then (1) gives

9. l. bpleP[a,b] (U(pl; f; a)) = L(pZJ f' a)

implies that J," fda = L(p,, f,a)

Now we vary p, , then (2) gives

fa_bf da = L. bpzeP[a,b}(L(pZJ f: a))

(2)

(3)
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This gives J," fda = fl;f da .
This gives fl;f da <[ " fda.

Hence the Theorem follows.

Theorem 2.4. If fe R(a), then
m[a®) - a(@] < [ fda < Mla®) - a(a)].

Proof . Let p be any partition of [a, b], then

Ulp, f,e) = [,°fda, (4)
and L(p, f, ) < [ fda (5)
Also Cfda = [*fda , (6)

and

mla() —a(@] < Lp.f.a) < Upf,a) < Ma®)-a@] (7)
Thus, (4), (5), (6),and (7) gives

[m [a(b) — a(@)] < Lp,f,a) < [, fda < U(p,f,a) < M [a(b) - a(a)].
This implies that

[m [a®) - a(@] < [} fda < M[a®) - a@].
Example 2.1: - If p* is refinement of p, then
Ul *,f,a) —L(p=*fa) <U(p,fa)—L(p,f )

Solution: Home Assignment.
A Condition of Integrability.

Theorem 2.5. A function fe R,[a, b],iff for every € > 0, there exists

a partition p of [a, b], such that



Up.f,a) - L. f,a) < e.

Proof. (Necessary part). Let f € R,[a,b]
Therefore [ *fda= [)fda =[] fda (8)

Let € be any number .Since [ fda and flzlfda are the infimum and

supremum of set of upper sums and set of lower sums respectively.

Therefore there exits partitions p,, p, € Pla, b],such that

[7" fda + ; > U (py, f, @) 9)

and f_lzlfda — Z— <L (py f, @) (10)

Let p= p, U p,,be common refinement of p, and p,, then

L(py,f,a) = L(py, f, @) (11)
Ulp, f, &) < U(py, f, @) (12)

Now, (9), (10), (11), and (12) gives

U(p, fa)< [ °fda+ Z—

and L(py, )< [)fda —=
- 2
Since p is the common refinement of the partitions of p,,p,, we have

U, fa)< fa_”fda+2—

and L(py, f,a) < [, fda —’Z— by (8).

31
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This gives U((p, f,a)—L(p, f,a)<e .
This follows necessary part.
(Sufficient part). Let ¢ > 0,and p be a partition , for which
U f,a) =L f,a) <e.
For any partition p we know that

L. f.0) < [, fda < [7* fda < U, f,a) .

This implies [ °fda— [*fda <U(p f,a)—L(p f,a) <e.
a a

This implies that
[" fda— [ fda <e (13)
Since J," fda - f_lzl fda = 0and € > 0,be any number.

Therefore from (13) ,we must have

- b
J," fda = f_afda :
This gives f € R,[a, b].

Thus the sufficient part follows and completes the proof of the result.

Theorem 2.6. Iff; e R, and f, € R, over [a, b], then
fi + freRala, bl and [)(f, + f)da = [} fida + [ f, da .
Proof. Let f=f +f,.
Since f; and f, are bounded.
Therefore f; + f, = fis also bounded on [a. b]

If P= {a =x,,x,,x,,....x,= b} be any partition of [a, b] and let
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m;' ,M;", m;", M; and m;, M, are the infimums and supremums of f;,
f, and f respectively on Ax; ,then

m' +m; <m; <M, <Mi' + M, .
Multiplying by Aa;, we get
m;" Aa; < m;" Aa; < m; Aa; S M; Aa; < M, Aa;+ M, Aq; .
This gives
imamy A+, m" Aay < YL m; Aa; <
oM Aa; <YM A +X M Aa;
This implies
L(p, fi,@) + L, f2r0) < L(P, f,a) <
= Upfio)=Ufia)+) <Up foa (14)
This implies that
Ulp,f,a) = L(p,f,a) <{U(p, fr,@) +U(P, fo,)}-{L(p, fr, @) +L(P,f>,0)}.
This implies
Up,f,@) = L(p,f,@) <Up. fi,@) -L(p, fr, @) + U(P, fo,@) -L(P,f2,@)  (15)
Vp € Pla, b]
Since f; € R, and f, € R, over [a, b].
Therefore every € > 0, there exist partition p;, p, , such that
Ulps, fu, @) = L(py, fr,a) <€/2,
and U(py for@) =L (02, f2,0) <€/ .
Let p = p; U p,, then

U(P;fp“) - L(prfl!a) < 6/2 V4
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and U fya)— Lp, fr,a) <€/,
This gives U(p, fi,a) — L(p,fi,a) + U(p, fo,a) — L(p, fr,a) < € .
Therefore (15) gives U(p, f,a) — L (p,f,a) <€ .
Thus 3 partition p of [a, b], such that
Ulp,f.a) - L (p,f,a) <e.
Therefore f € R,[a,b].

Now we have to prove that

jbfda = Lbflda + fabfzda.

Since the upper integral is the infimum of upper sums, therefore 3 partition

P1, P2 ,such that

b

U(p,fl,a)< J.flda+

&

2
and Ulp, f,a) < f; foda +§ :
For such partition p,
[ fda < U(p,f,@) U@, fi,@) + U, fo, @) by (16)

< ffflda+fff2da +€.

f:fdasffflda+fff2da+e Ve>0.
Letting € —» 0 we get

[} fda < [} fida + [} fda (17)

Simillarly by considering lower integrals as supremum of lower sums , we get
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[} fda > [ fida + [ fda (18)

From (17) and (18), we get

b b b
fa fda = fa fida + fa frda .
Hence the theorem follows.

Theorem 2.7. If f,,f, € Ryla,b],then f =f, —f, € R.[a, b], and

[} fda =[] fida — [ foda .
Proof. Let p ={a = x4, x, x5, ... e e ....., X, = b}be any partition of [a, b],
and m;, M{, m;' , M;'" and m;, M; are the infimum and supremum
of fi, f, and f respectively.
Then clearly bounds of (-f,) are - M/ and —m;
Therefore m;'- M < m; <M; <M —m; .
Multiplying by Aa; ,we get

Aa; mi+ Aa; (—M]') < Aa;ym; < Aa;M; < Aa; M| + (—m;’) Aa;

fori=1,2,..n.
This implies that
=1 Ba; mi — ity Aay (M) < Xy Aaym; <
L AagM; < Y Aag M - Y m’ Aa; .
Therefore L(p,f;,a) —U(p,f,a) < L(p,f,a) <U(p, f,a) <
U, fr,a)-L(p, f2, ) (19)
Ulp,f,a) =L, f,a) <U(, f1,a) = L(p, fo,a) = L(p, f1, @) + U(p, f, @).

This gives U(p,f,a) —L(p,f,a) < (p,f;,a) — L(p, f,,a) +



U(p»fz ,Of) - (pifZ ,0_’)

Let € > 0, then 3 partitions p, and p, of [a, b], such that

U(pllfll CZ) - L(plrflra) < 6/2 /

and
Upz fr@) = L(p2, f2r0) < €/, .
Let p = p; U p,, then
Ulp, foa) —L(p, fr,a) < €/,
and
U, fora) —L(p, frra) < €/3.
This gives

U(p’flla) - L(P:fp (X) + U(P,fz, (X) - L(p,fz, a) <€.

Therefore

Up f,a)—L(p,f,a) <E
This shows that feR,[a, b].

Now we will show that

b b b
J, fda=], fida - [ foda.
Since upper integrals and lower integrals are infimum and suprimum .

Therefore For any € > 0 , there exist partition p; and p, , such that

fabf1da’ > U(py, f1, @) _2 .

b
and J, frda <U(py, fr, ) —g :

If P = p, U p,, then

36
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Up,fi @) < [ fida +=.
and L(p, fo,a) > f; frda —g (21)
For such partition P, we have
[ fda <U®,f.@) UM, f,0) —L(p, ) by (19)
<[ fida— [ foda +¢ by (21).
This implies
[} fda < [ fida- [} f,da +e .
letting € —» 0, we get f; fda < f; fida- f; frda (22)
Proceeding with (—f;) and (-f,) in place off,,f, , we get
— [ fda < - [} fida + [ foda
This implies that
[} fda > [ fida [ f,da
This gives
[ fda = [’ fida — [ foda (23)
From (22) and (23), we get
[ fda=[] fida - [ foda.
Theorem 2.8. If f € R, [a,b], then f € R,[a,b] and f € R,[c, b]

V ¢ € [a, b] and conversely. Also in either case

fbfda = fcfda + fbfda .

Proof. Suppose that f eR,[a,b].

37
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Therefore for any € > 0,3 P of [a, b], such that
Up f,a)—Lp,f,a) <e
Let p* =Puf{c}
Then, U(p* f, o) —L(p*f,a) <U(p.f,a) —L(p.f,a) < €.

Let p, and p, be the set of points of p* between [a, c] and [c, b]

respectively. Then

U (p*/ f/ Of) = U(pllfla) + U(PZ;f: Gf) V4

and L(p*, f, @) = L(p,f,0)+ L(pz,f, @) .
Also Ul foa) —L(py, f,a) =0,

and U(p,, f, @) — L(p,,f,a) = 0.

We have

U(py, f, @) +U(pa, £, @) = L(ps,f, ) — L(p2,f, @)
=U(p* f, o) - L(p*fa) <€
Therefore,
[0, fra) =Ly, fra)] + [U(pz, fra) = L(pa, fra)] < €
Since each bracket on L.H.S is non negative .

Therefore, U (p,, f, @) = L(p,f,a) <=,

and U@z f,0) = L(pa. f,0)] < 5

where p; € Pla,c] and p, € P[c,b].

Therefore, f € R, [a,c] and f € R, [c,b] ; a<c <b.
Conversely, suppose f € R, [a,cland f € R, [c,b]; a<c <b.

Therefore for € > 0, we can find partitions p;, p, of [a, b], [a. c] respectively,
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such that

Upr f0) ~ L@y f@) < 5

and Upz, f,@) = L(pa, @) <3 .
Let p*=p,Up,, then clearly p* is a partition of [a, b].
Also,  U(p*, f, @) = L(p*f,a)= [U(py, , @) + Ulpy f,@)] —

(L f@) + L(pa. f,a)]
= U(py, f, @) — L(p,f,0) + Upz, f,a) — (P2, f, @)
< g +§ =€

Thus 3 partition p = of [a, b] , such that
Ulp*f,a)—Lp~*fa)<e
Therefore, f € R,[a,b].
We know that for any two function f; and f,.
If f=fi+f,,then
inf f =Zinf fi+inff,,
and Sup f < sup f; + sup f,.

Now for any partitionp,, p, of [a,c],[c, b] respectively, if p*= p, Up,,
then

U(p *;f; 0!) = U(pr, 0!) + U(pz;f; (1)
Inf { U(p *'f! 0!)} = lnf{U(pllf! (l)} + lnf{ U(pz, fl a)}

Therefore [ *fda = [ “fda + [ *fda

[} fda = [ fda + [ fda (24)
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Preceeding with (—f)in place of f, we get

b [ b
j fda < j fda+_[ fda (25)
From (24) and (25), we get

[} fda= [fda+ [ fda.

Theorem 2.9. The oscillation of a bounded function f on an interval

[a, b] is supremum of the set {|f(x;) — (x,)| , x4, x, € [a, b]} of numbers.
Proof. Let M, m be the bounds of fon [a,b].
Now m < f(xy), f(xy) <M; Vxq,x, €la,b].
This implies that
lf(x1) = fx)| <M —m V x1, x, € [a,b].
Therefore, M — m is an upper bound of the set { |f(x;) — f(x,)|: x4, x, € [a,b]}.

Let € > 0 be any number.Since M is supremum of f, therefore there exists

x' € [a, b], such that
fix)>M —g .
Simillarly 3 x" € [a, b], such that
fxN <m+>
This gives f(x)-f(x") > M—m—e€..
- FO) = F@) >M—m—ec -
Thus, Fano.intheset {|f(x') — f(x")|: x.,x, € [a,b]}, such that
f&D)—fx)>M—-—m—€ Ve>0.

This shows that M —m — € is not upper bound of the above set v e > 0.
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This gives M —m is l.u.b. of the above set.
Thatis, M —m= sup {lf(x;) — f(x2)|: x1,x; € [a,b]}.
Theorem 2.10. Iff,, f, € R, [a, b], then f,f, e R,[a, b].

Proof. Since f, and f, are bounded on [a, b], therefore f,f, is also

bounded on [a, b].
Let p ={a = xy x4, %3, e eev e .., X, = b} be any partition of [a, b].

Suppose m;, Mj, m;' , M;’ and m;, M; are the infimum and supremum

of fi, f; and f respectively in Ax; We have for all x; x, € Ax;

fifa(X2) -fi o (X1) =fi (X2) f> (X2) -f1 (X1) f> (X1)

= fi(X2) f (X2)- fi (X1) fo (X)+ fi (X1) fo (X2)-f1 (X1) fo (X1)
= fa(x2)( fi(X2)-~ fi(x21))+ fr (X1) (fz (X2) ~f> (X1))

Thisimplies  [(f1/2)(x2) — (fif2) ()| < |f2Ge) 1 f1 () — fiGe)| +
|f1 G f202) — f200)
< K[M{ —m|]+ K[M;-m;]
where |fi(x)| < Kand|f,(x)|]< K VxE€]la,bl.
This gives
M;-m; < K[M; —m]+ K[M;" —m]] (26)

Now let € > 0 be any number.
Since fi, f,are integrable, therefore 3 partitions p,, p,, such that

Upy, f1, @) = Lpy, fi, @) < 5 (27)
and Uy, for@) = L(pa, frr @) < (28)

Let P = p; Up,, then
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U, fr,a) = L(p, fr,a) < €/2K,
and
U, fo,a) — L(p, fo,a) < €/2k.
For this partition, we must have
M;-m; < k[M{—m]+ k[M{' —m]'] by (26)
This gives
Up, fif2 @) = L(p, fifz @) <
kU, fr,a) = L(p, fr, )] + k[U(p, fo, @) — L(p, f2, )]
< k§+k§ by (27) and (28).
This gives
Ulp,f,a) —L(p.f,a) <e€.
This shows that f = f,f, is also integrable with respect to a over [a, b].

Theorem 2.11. If f; and f, are two bounded and integrable functions

with respect to aover[a,bland 3 anumberA > 0,such that |f,(x)| = 1, Vx €

[a, b], then % is also integrable with respect to a over [q, b].
2

Proof. Sincef;, f, are bounded and |f,(x)| = A, Vx € [a, b].

Also 3 K,such that |f;(x)| < K,V x € [a, b].

LG) SE; Vx € [a,b].
f2(%) A

f1(x)
f2(%)

Therefore,

Thus, fi/f, is bounded function on [a, b].

Let € > 0 be any number, therefore 3 partitions p,, p, of [a, b], such that

Upy, fi,@) — L(py, fr, @) < er?/2K.
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and U(py, fo, @) — L(py, o, @) < €A?/2K.
Let P = p; U p,, then

Ulp, fr@) — L(p, f1, @) < €A/2K (29)
and Up, f,a) — L(p, fo, @) < eA?/2K (30)
Let p = {a@ =x,, x4, x,...x,, = b} be any partition of [a, b] .

Suppose m;, M{, m{' , M’ and m;, M; are the infimum and supremum

of fi, f, and f respectively,we have

() 6 - () o] =

filx2)  f1(xq)
f2(x2)  fa(x1)

f10e2) fo(x1)—f1(x1) f2(x2)
f2(x2).f2(x1)

S A ACHERACHACHIIE

This implies that

(&) e - (B ol <]

1

/1_[|f1(x1)||f1(x2) fixe)| + 1) f2 (1) — fo ()]

f1(x2) f2(x1) — fz(xl)f1(x1)+”
fo(x1) fi(x1) — fi(x1) f2(x2)

< /112 [K{M;" —m;" } + {M'-m'}]
= Aﬁz [{M;" —m;"} + {M]"-m}}].
This implies M, —m; S%[{Mi' —m;'} + {M{"-m{}]
This gives
u(p, 2 Lo @) - L(p,— @) < [U(p, f1,@) + L, f1,0) + U, f, @) + L(p, f, @)]

—+&] —¢ by (29)and (30)
2K y ’
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Therefore, U (p, ]’:—: ,a)—L (p,]’:—:,a) < €.

Hence % € R,[a, b].

Theorem 2.12. If f e R, [a, b], then |f| e R [a, b] and

[7 fda| < [71f| da
Proof. We know that if f < g on [a, b], then
[} fda < [} gda (31)
Since fis bounded , therefore 3 K > 0, such that
If()I <K, VxE€lab].
Therefore the function |f| is also bounded.

Again, since f is integrable, therefore for any e > 0,3 partition P of [a, b],
such that

Ulp.fra) —L(p.fa) <€ (32)
Let M; m; and M; ,m; be the bounds of f and |f| in Ax; ,we have V x;,x, € Ax;
f Gl = If Gl S If G2) = Flxe)| < M- m; .
This implies that M;- m; < M'; —m/;
This implies for any partition P of [a, b];
U (p,Ifl,a)-L (p,Ifl,a)< U(p.f,a) — L(p, f, )
< e by(32).
Hence |f| € R,[a, b].
Also, f(x) <|f(x)| and-f(x) < |f(x)] Vx €la,b] .

Therefore by (1), we have



[} f(da < [ | det
and - [ fda <[ |flda
This gives |f; fda| < fflfl da.
Theorem 2.13. If f € R,[a, b], then f2 € R [a, b].
Proof.Since f is bounded on [a, b] therefore 3,a numder K > 0, such that
If(x)| <K VxE€]la,b].
Wehave |f?(x)| = IfIIf(x)| <K* VxE€]la,bl].
This shows that f* is also bounded.

Let M; m]bebounds of |[f| and M/ m], be those of Zin Ax;
Then, M;=M{*> m;=m}? (33)
Also, since fe R,[a, b], then for any € > 0,3 a partition P of [a, b],such that
Ulp,f,0) = L(p, f,0) <
Now, we have
Ulp,f? @) —L(p, f?a) =ZXLi(M; —my)Aq;
=XLi(M{? —mi?) Aa;
=% (M + m))(M] — m;) Aq;
< Y (K + K)(M] —m;) Ag;
= 2K Y (M; — mp)Aa;
=2K [U (p, f,a) — L(p,f,a)] < ZK.i =€.
Thus 3 partition P of [a, b], such that
U(p, Pa)— L (p,P,a)<e Vx>0

Hence f € R, [a, b].
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The integral as a limit of sum.

Earlier, we arrived at the integral of functions via the upper and lower
sums. The number M;,m; which appear in these sums are not
necessary the values of the functions (they are the values of fif fis
continuous). We shall now that [ fda can also be considered as a limit of

a sequence of sums in which M; and m; are replaced by the values of f.
Definition 2.3. Corresponding to partition p of [a, b] and ¢; € Ax;,
Consider the sum S(p, f,&) =Y, f(t)Aa; .

We say that S (p, f,a) converges to A as u(p) - 0, that is

lim S, f,a) =A,
u(p)—0 (pf )

If for every € > 0, there exist § > 0, such that
Is(p, f,a) — A| <€, for every partition

P ={a = xy, x4, X5, ..... X, = b} of [a, b] with norm u(p) < § and every choice

Of ti € Axl' .
Theorem2.14 .1f lim S(p, f, a) exists as u(p) — 0, then

fe R, [a b]

and lim S, f,a)= fbf(x)da.
u(p)—0 a

Proof. Let us suppose that limS(p, f,a) exists asu(p) » 0 and
is equal to A.

Therefore for every € > 0,36 > 0such that for every partition P of

[a, b] with mesh u(p) < § and every choice of t. in Ax;, we have

€
IS(p, f,a) —A| < 3
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or A-§<S(p,f,a)<A+§ (34)

Let p be one such partition. If we let the points t; range over

interval Ax; and take the infimum and the supremum of the sums S(p, f, a).
Therefore yields (34)

A--<L(p o)< Ulp,f,a) <A+
Therefore, Up,f,a) —L(p,f,a) <e

Hence lirr&s p, f,a)= f;f(x)da = A.
u—-

Theorem 2.15. If fis continuous on [a, b], then f € R, [a, b].

Moreover to every € > 0,3aé > 0,such that

<E€.

b
‘S(p,f, @) - j F(@)da

For every partition p = {a = x,, x,, x5, .....x, = b} of [a@, b] with  u(p) <
6 and for every choice of t; in Ax;.

That is,
. b
lims(p, f,a) = fb fx)da.
u—0
Proof. Let e > 0 be given and let us choosen > 0 , such that
nla(b) —a(a)] <e (35)
Since continuity of fon the [a, b] implies its uniform continuity on
[a, b] . Therefore for n > 0 there corresponding § > 0, such that
If (&) — F(&)] <m,if |ty — to] <6,t, ¢, €la,bl. (36)

Let P be partition, with u(p) < §,then in view of (36)
M;—m; < n, i=12,...n
- Ulp,f,a) = L(p,f,a) <nla(b) —a(a)] <e.
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Therefore, fe R, [a, b].
Again, if fe R, [a, b], then for every e > 0,3 § > 0, such that for all
partitions P with u(p) < é

IS, f,a) —L(p,f,a)| <e€.

Since S(p, f,a) and ff fda .both lie between U(p,f,a) and L(p, f,a) for all

partitions p with u(p) < 6 and for all position of t; in Aq;.

|s@.f.0) = [} fGdal < Ulp,fa) = L, f.0) <€ .

Hence limS(p,f,a) = fb fda.
©—0 a

Theorem 2.16. If f is monotonicon [a, b] and if
ais contineous on [a, b],then f € R, [a, b].
Proof. Let € > 0 be given positive number for any positive integer n,

choose a partition p = {a = x4, x4, X, ..... x,, = b} of [a, b], such that

Aq; = “0-@ i=1, 2, 3...n.

t n

This is possible because a is contineous and monotonic increasing on closed
interval [a, b] and thus assumes every value between its bounded
a(a) and a(b).
Let f be monotonic increasing on [a, b], so that its lower and upper bounds
m;, M; in Ax; are given by

m;=f(xi—1), M;=f(x) i=123..n
Therefore,

Ulp,f,a) =L, f,a) = Xi-,(M; —m;) Aa;

(b)-a(a)
= % i=1(M; —my)



=20 a@ on ey — Fx )]

= CEL(F(b) - f (@)

< ¢, forlargen.
Hence, f € R, [a, b].
Theorem 2. 17. If fe R, [a, b], and a is monotonic increasing on [a, b],
such that o €R[a, b], then fe R, [a, b] and
[ fda = [ fa'dx.
Proof. Let e > 0 be any given number.
Since fis bounded, there exist M, such that
lf()| <M, VxE€lab].
Again since f,a’' € R[a, b], therefore fa' € R[a, b}and consequently 3,
6, > 0,6, > 0,such that
X f () a'(t) Ax; — [ fa'dx| < g (37)
for u(p) < 6;, and all t; in Ax; and
1Y a'(t)Ax; — [ a'dx| < ﬁ (38)
for u(p) < 6,,and and t; € Ax;.
Now for u(p) <8, and allt; € Ax;, s; € Ax;, (38) gives
Xla’(t) — a'(s)]| Ax; < Zﬁ:— (39)
Let 6 = min(6,,6,) and P any partition with u(p) < §.
Also by Lagranges Mean Value theorem , there are points s; € Ax;, such that

Aai = a'(s;) € Ax; (40)

49
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Now for all t; € Ax; ;
X f(t)da; — [ fa'dx] = X f(t)a'(s)Ax; — [ fo'dx|
= [Xft)a’t)Ax; — [ fa'dx + L ft)[a' (s) — a' (t)]Ax]
< X f(t)a’ (t)Ax; — [ fa'dx|+ZIf )l la'(s) — &' (t)Ax;]
< g +M j =€ (41)
Hence for any € >0, 3 § >0, such that for all partitions with
u(p) < &, (41) holds

Therefore, lirréZf(ti)Aai exists and equals [ fa'dx .
u-

Hence f €e R, [a, b].
Therefore, fbb fda = fbb fa'dx.
Theorem 2.18. (Particular case).

If fis continuous on [a, b] and « has a continuous derivative on [a, b], then

fbb fda = fbb fa'dx.
Proof. Under the given condition all the integral exists.
Let p ={a = xy, x4, x5, .....x, = b} be any partition of [a ,b] .
Thus by Lagrange’s Mean Value Theorem it is possible to find

t; €]x;_1,x;[, such that

a(x;) —alxi_q) = a'(t;)(xi — x;_1) i=1,2,.....n,
or Aa; = a'(t;)Aa; .
Therefore

S, f,a) = Xiza f(t)Aa;
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= 37 () &' (t)Ax,
= S(p, f, af,).

Now letting u(p) — 0, we get

f:fda = fbbfa’dx.

Theorem 2.19 . (First Mean Value Theorem).
If a function is continuous on [a, b] and a is monotonic increasing on
[a, b], then there exists a number ¢ € [a, b] , such that
J, fda = f(9)[ab) - a(a)].
Proof: Since f is continuous function and a is monotonic function.

Therefore, fe R, [a, b].
Let m and M be infimum and supremum of fin [a, b], then
mla(b) — a(@)] < [ fda < Mla(b) — a(a)]

This implies that

1} raa
<
m = a(b)-ala) —
_ flffda
Let C = )@

Then, [} fda = C{a(b) — a(a)] where m<C <M.

Since fis continuous function therefore 3¢ € [q, b].
f(¢&) =cC.

Thus [ fda =f(&)[ab) — a(@)].

Hence the theorem.



Theorem 2.20. If fis continuous and a monotonic on [a, b], then

[ fda = [f(x)a()]) - [, adf

Proof. Under the given condition all the integrals exist.
Let p ={a = xy, x4, %5, ..... X, = b} be a partition of [a, b].

Choose t,,t,,ts,.....t, , such that

Xi_1 <t <x,
Let to=a, t,,1 =b, sothat
tic1 <x;_1 =< t.
Clearly Q = {a = ty,ty, ty, .....t,, t,41 = b} is also a pattition of [a, b].
Now

S(p, f,a) = Xiz, f(t)Aa;

= f(t )[a(xy) — a(xp)] + f(t)[a(xy) — a(x)] + -+ f(t)[a(x,) — a(xn_1)]
=—a(xo)f(ty) —alx)[f () — f@ED] + alx)[f(t3) — fE)] + -+ alx,_1) +

[f(tn) - f(tn—l] + a(xn)f(tn)]
Adding and subtracting a(x,)f(t,) + a(x)f (tne1)

S, fra)= a(x )f(tyi1)— alxg) f(ty) — Xm0 a(x)[f (tiv1) — f(t)]

= f(b) a(b) — f(a)a(a) = S(Q,a,f) (42)

If u(p) -0, then p(Q) » 0, sowe get
Lim S(p, f.a) = [, fda
and  Lim S(Qa,f) = [, adf.

Hence proceeding u(p) — 0, we get from (42)
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[P fda = f(b)a(d) - f(@a(a) - [, adf .
Therefore, ff fda = [f(x)a(x)]z - f; adf
This completes the proof.
The above theorem is also known as second Mean Value Theorem.
Fundamental Theorem of Calculus.

Theorem 2.21: A function f € R[a, b] and there exists a function F such

that F’= fon [a, b], then

[} fdx = F(b) - F(a) .
Proof. Since the function F’=f is bounded and integrable therefore for

given €>0, 3 § >0, such that for every partition

P ={a = xy,%q1, e ... X} With norm u(p) < 6,
b N\
I f(t)Ax; — f) fax|
or . (43)
. b
”(lgf_l)o Y f(t) bx; = [ fdx

for every choice of points ¢; in Ax;. )
Since we have freedom in the selection of points ¢; in Ax; , we
choose them in particular way as follows
By Lagrange’s Mean Value Theorem, we have
F(x;)) — F(x;—y) = F'(x)Ax;, i=1.23..... n
= f(t)Ax;

This implies that

i1 f () Ax; = Xin, [F (%) — F(xi-1)]



= F(b) — F(a)

Therefore, lim Y™, f(t) Ax; = F(b) — F(a) .
u(p)—0

Hence f:fdx = F(b) - F(a).

Remark. It is this theorem that shows under certain conditions

integration and differentiation are reverse processes.
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