
Understanding C Basics-I ∗

K.M.Shafi†

December 9, 2016

1 Introduction

C is the mother of computer languages by its influence still lasting and has
also became the lingua-franca among almost all the computer scientists and
professionals. Developed in 1972 by Dennis Ritchie at Bell Labs (AT&T), it
got its first ANSI 1 standardization in 1989 commonly referred as C89.Later,
it was amended and then re-standardized in 1999 and is refereed as C99
containing all the features of C89 plus standardized amendments .Nowadays,
programming in C is essential part of the computer curriculum at secondary
and bachelors level.

2 Data Types

What is data type? It refers to what type/nature of data a particular
computer language is able to represent and process. As every thing at the
hardware level on the computer is stored as 0s and 1s,it is the language itself
and programmer which give sense to those 0s and 1s. Whenever you need to
do some processing and representation with particular data, you first need
to sort out what type of that data is. It can be a name of an item, or a
value representing some quantity and that value can be a positive, integer
or fractional number or it can be photograph or a signature or some video
footage. At the hardware level, all these types of data are stored as 0s and 1s
but at the programmers level every data type needs different treatment and

∗This tutorial is originally intended for the PGDCA students batch 2015-16 of DDE,
KU
†mshafi710@gmail.com
1American National Standards Institute

1

has well defined properties and operations associated with it like we can’t
add two addresses but we can add two salaries as the former operation does
not make sense.
If the language inherently supports some data types then those are catego-
rized as primitive or basic or primary data types. Basic data types doesn’t
always suffice for representation and processing needs of program. In that
case, the programmer tries to create or define its own data types, generally
known as user defined data types.
The basic data types supported by the C language are integers, floating point
and characters.

2.1 Integers

Integer data types and its variants are used to handle numeric data which
is non fractional. To instruct a computer to have a space of integer type,
basic C statement would like int x; where int is the keyword and x is the
name (variable) of that space in the memory reserved for your program and
can be utilized for storing and processing information. Keyword means it
is reserved and has a predefined meaning. x can be replaced by any other
valid name as per the rules of C Language (see Variables subsection below).
Every basic statement of C language is terminated by a semicolon. Range of
values that can be stored in the variable (here x) is determined by its data
type which is int here. On 32-bit compilers 2 , the variable declared as int
takes 32 bits and therefore by the formula of −231 to +231 − 1 it can hold
any value between -2147483648 to + 2147483647.
Statements like x=0; x=710; x=-999999; x=987654321; x=-2147483648 are
all valid assignments to x ; where as x=2147483648; x= -30000000000 are in-
valid as they are out of the range. Nature of int data type can be delimited or
extended by using some modifiers using short, long, and unsigned keywords.
Statement like unsigned int x; gets same 32 bit memory but this time it can
be used only for storing non-negative numbers with range doubled i.e 0 to
232 − 1, while as statement like short int x; will take only 16 bits with its
range shortened from −215 to +215 − 1.

2.2 Floating Point

In C, real numbers whether in fractional or exponential form can be han-
dled either through float or double data type . They differ in the number of
bytes allocated to them and the range. double can be extended by long mod-
ifier to accommodate real numbers with greater precision. 710.5 , -710.5 ,

232-bit compiler means

2

710.5 are examples of fractional while as + 7.0e+5, .1E+3 are of exponential
form.

2.3 Characters

Character data type is used to represent any character like a letter of
an English alphabet, digit, or a special symbol like $, %, # etc enclosed in
single quotes. Variable declared as character (by default signed) gets only one
byte allocated, hence restricting its range from -128 to +127. An unsigned
character can have value from 0 to 255 therefore can represent only ASCII 3

and Extended ASCII characters

2.4 Data Type Modifiers

Data types can be modified in C to suit a particular need. Although,
all numeric data type are signed by default, we can explicitly mention that
using modifier signed as prefix at the time of declaration. To make variable
unsigned, it is mandatory to use signed keyword before data type (only for
int, char, long). Various modifiers used are signed, unsigned, long, short.
long modifier is used only with int and double data types to increase their
range, while as short is used for only integers to decrease their ranges. The
table below shows the size and range of the frequent used data types and
their modifiers.

3 Constants & Variables

3.1 Constants

A constant is a literal in C representing some value which cannot be
changed. For instance, 710 is an integer constant, 8.2E7 is a floating point
constant, ’$’, ’A’,’%’ is a character constant. They can be assigned to a
variable or can be used directly in an expression. Character constants are
always enclosed in single quotes in C.

3.2 Variables

Technically, variable refers to name given to a memory location. It can be
a one byte location or multi-byte depends upon the data type of which the

3ASCII means Ameraican Standard Code for Information Interchange

3

Type Size Range
char 8 -128 to +127

unsigned char 8 0- 255
signed char 8 same as char

int 32 −231 to +231 − 1
unsigned int 32 0 to +232 − 1
signed int 32 same as int
short int 16 -32768 to +32767

unsigned short int 16 0 to 65335
signed short int 16 same as short int

long int 32 same as int
signed long int 32 same as signed int

unsigned long int 32 same as insigned int
float 32 3.4e -38 to 3.4e +38

double 64 1.7e-308 to 1.7e+308
long double 80 3.4e-4932 to 1.1 e +4932

Table 1: Size and range of data types in C on a 32 bit machine

variable was declared. With a particular variable, many things are associated
with it either implicitly or explicitly. A variable has name, value, address,
data type, storage class. Address means where in the memory a variable
has got its space and storage class specifies its default value, its scope i.e.,
its visibility within the program, its lifetime i.e., to what extent it can exist
in the memory during the execution of program. Program can change the
variable’s value but not the address or storage class. In C, every variable
used needs to be declared at the start of the program.
3.2.1 Variable Naming Rules

Variable name shall always start with a letter or underscore and may be
followed by letters or digits or underscore. Variable name cannot contain
spaces or special symbols. More important it can not be a keyword. Some
compilers restrict the length of variable name up to 255 characters.

1. rollno, rollno, rollno1, rollNo, roll no1 are examples of valid variable
names.

2. 6rollno, roll no,%rollno are examples of invalid variable names due to
reasons mentioned above.

4

Less than <
Less or equal to <=

Greater than >
Greater or equal to >=

Equal to ==
Not equal to !=

Table 2: Relational Operators

4 Operators

Operators represent or refer to operations which can be performed on
data. The data (constants,variables, expressions) on which they act are called
operands. Operators need to be in consonance with their operands. Depend-
ing upon the number of operands they need to perform upon, operators can
be categorized as unary, binary and ternary. Binary Operators needs two
operands to perform, ternary operator need three and unary need one. Well
defined combination of operators and operands i.e., as per the rules of the
C language make an expression which on evaluation give a result which can
be used for storing, displaying or used in evaluating other expression. C
provides large range of basic operators which are discussed below.

4.1 Arithmetic Operators

+,−, ∗, /,% for addition, subtraction,multiplication,division and modulus
operations respectively. These are valid for only those data types which
represent numerical values. For instance, simple statement for performing
multiplication on two integers and storing the result in third can be like this
z=x*y; in which the values of x and y are multiplied and the result is put
into z without changing the values of x and y. Similarly z=x%y ; is the
C statement in which y divides x and puts the remainder in z instead of
quotient. For extracting the quotient, operator / is used (only in case of
integer operands).% (modulus) operator can’t be used with non-integer data
types.

4.2 Relational Operators

Relational operators perform arithmetic comparison between the values
of its operands and give the result as either 0 or 1.The relational operators
supported by the C language are given in the following table.

5

Logical AND &&
Logical OR ||

Logical NOT !

Table 3: C logical operators

If the variable x holds 20 and y 30, then x < y will give 1 as result and
y > 100 will give 0. In other words, the first expression says ’is x less
than y’, which it is and hence 1 representing truth value of true. Similarly
2nd expression says ’is y greater than hundred’, which it is not hence 0
representing truth value of false.Relational operators can be used with any
numerical data type.

4.3 Logical Operators

Normally, logical operators in C are used to combine the multiple rela-
tional expressions. C provides three operators for such case as shown in table
below.

The && and || are binary operators i.e., involving two operands or ex-
pressions while as ! is unary. The result of logical expression involving &&
will yield true value only in case if all of its operands are true other wise in all
other cases it will yield false value only. Similarly, logical expression of || will
yield false if all of its operands are false other wise in all other cases it will
yield true. For instance the logical expression (5 < 6)&&(100 < 5) will yield
false because 100 < 5 yields false value and trueness of 5 < 6 does not make
this expression true. Similarly, (5 < 6)||(100 < 5) yields true because at least
one of the subexpression is true. In case of ! operator !((5 < 6)||(100 < 5))
expression will yield false while as (5 < 6)&&(100 < 5) will yield true be-
cause negation operator (!) negates the truth value of its operand on which
it acts.

4.4 Assignment Operators

C provides number of assignment operators like =, +=, -=, *=, /=, %=.
Assignment operators are binary in nature taking the value of expression
to its right side and puts its value to the variable on left side. For instance
a = 5∗20+30; expression will assign the value of 130 to variable a. The above
given operators except = are also called compound assignment operators as
they are a little bit different from the normal assignment operator. For
instance, a+ = 10; will add the value of 10 to the a and put the resulted
value back into a. Similarly, a∗ = 10; will multiply the value of a by 10

6

and put the resultant value back into a. Same is the case with all the given
operators.

4.5 Unary Operators

Unary operators take only one operand to act upon. C provides different
unary operators like -(unary minus) which multiplies it contents by -1. C
provides two different special operators viz., increment ++ and decrement
−−. ++ increases the value of its operand by one and −− decreases by 1.
Both ++ and −− has two versions viz., pre ++, post ++, pre −−, post
−−. Both these two versions will act differently when used along with some
expression otherwise if used as standalone there is no difference between the
two versions. Table below tries to explain all the version of these operators.
Assume variable a and b has already been initialized with values 10 and 20
respectively. //

4.6 Precedence & Associativity

If an expression contains multiple operators, then the overall result may
be different depends upon the order of evaluation of individual operators in
the expression. In order to have accurate value all the time,order of evalu-
ation is standardized and thus precedence comes into play. Precedence tells
about which operator to evaluate first. But another situation arises when
in an expression there are multiple operators having same precedence. To
overcome such situation, associativity takes the role. It tells from which side
to evaluate when there are multiple operators of same precedence.

5 Writing your First C program

5.1 Basic Structure of C Program

Execution of C program always starts from special function called main().
A function in C is self contained block of statements enclosed in curly braces
and given a unique name. C program can have number of functions of differ-
ent names but can have only one main() function. Concept of function will
be discussed in upcoming tutorials.

i n t main ()
{
<C language statements>
}

7

Expression Value Explanation
a++; a gets 11 post ++ increments the

value of a by 1.
++a; a gets 11 pre ++ increments the

value of a by 1.
a−−; a gets 9 post −− decrements the

value of a by 1.
−− a; a gets 9 pre −− decrements the

value of a by 1.
b = a + +; a gets 11 but b gets only 10 Here the value of a i.e.,

10 is first assigned to b
then value of a is post in-
cremented by 1;

b = + + a; a gets value 11 and b gets also 11 Here the value of a i.e.,
10 is pre-incremented to
11 and then the same
value of a is assigned to
b.

b = a−−; a gets 9 but b gets 10 Here the value of a i.e.,
10 is first assigned to b
then value of a is post
decremented by 1;

b = −− a; a gets value 9 and b gets also 9 Here the value of a i.e.,
10 is pre decremented
to 9 and then the same
value of a is assigned to
b.

Table 4: Examples of post/pre increment and decrement operators

8

Table 5: Precedence and associativity of some commonly used operators. For
other opeartors check Appendix A
Description Operator Associativity
Unary Minus - Right to Left
Increment/Decrement ++ – Right to Left
Negation ! Right to Left
Multiplication * Left to Right
Division / Left to Right
Modulus % Left to Right
Addition + Left to Right
Subtraction - Left to Right
Less Than < Left to Right
Less than or equal to <= Left to Right
Greater than > Left to Right
Greater than or equal to >= Left to Right
Equal to == Left to Right
Not equal to ! = Left to Right
Logical AND && Left to Right
Logical OR || Left to Right
Assignment = *= /=%= += -= Right to Left

9

6 Basic I/O Statements

6.1 printf

Normally printf statement is used to put the messages and results of your
program on the screen of computer. To use printf or scanf function in a
program, one must use #include < stdio.h > statement (compiler directive)
at the start of program. This directive tells the compiler (preprocessor) to
include the stdio.h header file as part of the program at time of compilation
as that file contains the details about functionality of printf function. The
syntax of printf function is: Basic syntax:

p r i n t f (” format s t r i n g ” , var i ab l e1 , v a r i a b l e 2) ;

”format string” can contain direct text message or format specifier(s) re-
ferring to value(s) of variable(s) specified correspondingly after the mes-
sage. Different format specifiers like %d for an integer in decimal format,
%f for floating point type, %c for character type, %l for long type,%u for
unsigned integer are used normally. E.g., printf(”programmers never get
tired”); will display programmers never get tired on the screen while
as printf(”%d%f”,a,b) will display the values of variables a and b which are
supposed to be of type int and float

6.2 scanf

scanf is the versatile statement used to get the input from user through
keyboard. the basic syntax of the scanf statement is

s can f (” format s t r i n g ” , &var i ab l e1 , va r i ab l e2 , . . .) ;

”format string” specifies what type of data the function is expecting from
user and how much.The list of variables followed like &variable1, &variable2
specify the address in memory where the input received is to be kept. Pro-
gram below demonstrates the use of print and scanf statement

#inc lude<s t d i o . h>
i n t main ()
{
i n t x ;
char y ;
f l o a t z ;
p r i n t f (” Enter tha va lue s f o r x , y and z ”) ;

10

s can f (”%d%c%f ”,&x,&y,&z) ;
p r i n t f (” the value o f x=%d y=%c and z=%f ” , x , y , z) ;
r e turn 0 ;
}

Output of the program will be
Enter the values for x , y and z
9 @ 3.14
the value of x=9 y=@ and z=3.14

7 Comments

Comments are the statements which are embedded in the actual code to
increase its readability and maintainability. Compiler skips those statements
which are marked as comments. In C, comments are put using opening and
closing pair of slash and asterisk as shown below.

i n t main (){
/∗ p r i n t f (” Casual programmers ”) ;∗/
p r i n t f (” Die hard Programmers ! ”) ;
r e turn 0 ;
}

This code snippet will only display Die hard Programmers! and not Casual
programmers as it is placed in comments and will be ignored by compiler.

11

